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Abstract

The Hamiltonian Heff of an open quantum system consists formally of a first-
order interaction term describing the closed (isolated) system with discrete
states and a second-order term caused by the interaction of the discrete states
via the common continuum of scattering states. Under certain conditions, the
last term may be dominant. Due to this term, Heff is non-Hermitian. Using the
Feshbach projection operator formalism, the solution �E

c of the Schrödinger
equation in the whole function space (with discrete as well as scattering states,
and the Hermitian Hamilton operator H) can be represented in the interior
of the localized part of the system in the set of eigenfunctions φλ of Heff .
Hence, the characteristics of the eigenvalues and eigenfunctions of the non-
Hermitian operator Heff are contained in observable quantities. Controlling
the characteristics by means of external parameters, quantum systems can be
manipulated. This holds, in particular, for small quantum systems coupled to
a small number of channels. The paper consists of three parts. In the first part,
the eigenvalues and eigenfunctions of non-Hermitian operators are considered.
Most important are the true and avoided crossings of the eigenvalue trajectories.
In approaching them, the phases of the φλ lose their rigidity and the values of
observables may be enhanced. Here the second-order term of Heff determines
decisively the dynamics of the system. The time evolution operator is related to
the non-Hermiticity of Heff . In the second part of the paper, the solution �E

c and
the S matrix are derived by using the Feshbach projection operator formalism.
The regime of overlapping resonances is characterized by non-rigid phases of
the �E

c (expressed quantitatively by the phase rigidity ρ). They determine the
internal impurity of an open quantum system. Here, level repulsion passes
into width bifurcation (resonance trapping): a dynamical phase transition takes
place which is caused by the feedback between environment and system. In
the third part, the internal impurity of open quantum systems is considered
by means of concrete examples. Bound states in the continuum appearing at
certain parameter values can be used in order to stabilize open quantum systems.
Of special interest are the consequences of the non-rigidity of the phases of
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φλ not only for the problem of dephasing, but also for the dynamical phase
transitions and questions related to them such as phase lapses and enhancement
of observables.

PACS number: 03.65.Yz

1. Introduction

In order to study the properties of quantum systems, the interaction of the system with the
environment has to be taken into account. Mostly, the environment is considered to be a
measuring device that provides information on the system after interacting with it. The system
is localized in space. However, there is always a natural environment into which the quantum
system with discrete states is embedded. This environment consists of the continuum of
extended scattering states into which the states of the system are embedded and can decay.
The coupling matrix elements between the discrete states of the system and the scattering
states of the continuum determine the lifetime of the states, which is usually finite due to this
coupling.

The natural environment differs from that of a measuring apparatus because it exists at
all times and is completely independent of any observer. It allows us to obtain information
on the system without observation it all the time. An example is the radioactive dating used
in geologic studies. That means under realistic conditions, a quantum system should be
considered as an open system consisting of the system itself and the continuum of scattering
states into which it is embedded.

An exact description of open quantum systems meets the mathematical problem to
consider simultaneously the wavefunctions of discrete and scattering states. Both types
of wavefunctions are completely different from one another. The discrete states k characterize
the spectrum of the system and are orthonormalized according to the Kronecker delta δkk′

while the scattering states are continuous in energy E and can be orthonormalized according to
the Dirac delta function δ(E −E′). The wavefunctions of discrete and scattering states appear
in a combined manner in most physical expressions characteristic of open quantum systems.
Special mathematical considerations are necessary therefore in order to receive reliable results.

In the N-level Friedrichs model [1, 2], the total Hamiltonian H is defined by

H = H0 + μV, (1)

where μ is a real number and H0 is the so-called free Hamiltonian

H0 =
N∑

n=1

ωn|n〉〈n| +
∫

Kω

ω|ω〉〈ω|ρ(ω) dω. (2)

Here, |n〉 and |ω〉 satisfy the orthonormality conditions 〈n|n′〉 = δnn′ , 〈ω|ω′〉 = δ(ω − ω′)/
ρ(ω), and 〈n|ω〉 = 0. ρ(ω) is a non-negative function interpreted as, e.g., an electromagnetic
mode density. The sum runs over the finite number N of discrete basic states |n〉 and the
integral is over the considered energy region with Kω = {ω|ρ(ω) �= 0}, like the energy band
allowed by the electromagnetic mode.

The interaction Hamilton operator V describes the coupling between |n〉 and |ω〉,

V =
∑

n

∫
Kω

(vn(ω)|ω〉〈n| + v∗
n(ω)|n〉〈ω|)ρ(ω) dω, (3)
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where vn(ω) is the interaction matrix element between |n〉 and |ω〉. In the Friedrichs model, the
Schrödinger equation with the Hamiltonian H is directly solved. It is not easy to receive results
that are of physical interest in a broad range of parameters. An example for the mathematical
troubles appearing in direct solving the equations is the study of bound states in the continuum
performed in [2].

In order to receive results for concrete systems, the partitioning technique is introduced
in quantum chemistry more than 50 years ago [3]. In this approach, the Hilbert space is
splitted into subspaces by means of a set of projection operators. The subspaces have virtually
nothing to do with each other. This method is applied, e.g., to the description of infrared
spectra of different molecules [4]. At about the same time, another projection operator
formalism is introduced in nuclear physics [5]. Here, the whole function space is splitted
into two subspaces one of which contains the discrete states while the other one contains the
continuum of scattering states. This formalism is applied successfully to the description of
nuclear reactions by introducing statistical ensembles for the discrete states and their coupling
coefficients to the continuum.

Today, there are many different methods to solve the problem in concrete cases
numerically. A few examples are the following. The numerical and functional renormalization
group approaches are applied recently to the problem of phase lapses [6, 7] observed in the
transmission through quantum dots. A powerful method is the Green function approach
that is used in the tight-binding lattice method for the description of electronic transport
in mesoscopic systems [8–10]. In the framework of the tight-binding approximation, the
electronic dynamics is studied in complex molecular networks [11]. Other approaches are
the Keldysh formalism that is used recently for the description of environmentally induced
quantum-dynamical phase transitions [12] and the bottleneck model of the transition state
theory [13] used in quantum chemistry. The method of complex scaling [14] is applied to
the description of different systems [15]. The Feshbach projection operator (FPO) formalism
[5] is applied today, without using any statistical assumptions, also to the description of light
nuclei, especially on the edge of stability [16, 17], as well as to laser-induced continuum
structures in atoms [18] and to the transmission through small quantum cavities [10].

Only very few methods are applied successfully to the description of an open quantum
system under different conditions. Most interesting is the regime of overlapping resonances
where the dynamical transition from one regime to another takes place (from low level density
to high level density). Using the FPO formalism, this dynamical transition is traced by
considering different nuclei, atoms in a laser field and quantum cavities with one or two
attached leads [16, 19]. In the transport through small quantum cavities with large openings
[20], direct processes are supported when special states couple strongly to the leads, and can
result in deterministic transport as signified by a striking system-specific suppression of shot
noise. Experimental as well as theoretical studies performed by Pastawski et al [12] show
similar results: in the presence of an environment, the oscillatory dynamics of a quantum
two-level system can undergo a quantum-dynamical phase transition to a non-oscillatory
phase.

The different behavior of open quantum systems under different conditions is a challenging
feature of open quantum systems that has to be addressed in the theoretical description. It is
related to the coupling of the system to the environment and the feedback of this coupling onto
the system. In the following, we will highlight the feedback between the quantum system and
the environment into which it is embedded. Since most studies of this question are performed
on the basis of the FPO formalism without using any statistical assumptions, we will center
the discussion on this model and its exact solutions. The results obtained will be compared to
those received with other methods.
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By using the Feshbach projection operator formalism [5], the basic equations for the
wavefunctions of the states n and ω in (2) are solved separately such that the main problem
of the Friedrichs model is avoided. The full function space is divided into two subspaces:
the Q subspace contains all wavefunctions that are localized inside the system and vanish
outside of it while the wavefunctions of the P subspace are extended up to infinity and vanish
inside the system, see [16, 19]. The wavefunctions of the two subspaces can be obtained
by standard methods: the Q subspace is described by the Hermitian Hamilton operator HB

that characterizes the closed (localized) system with discrete states, while the P subspace is
described by the Hermitian Hamilton operator HC that contains the continuum of scattering
wavefunctions. Thus, H0 = HB + HC in (2). The coupling matrix elements are calculated
according to (3) by using the eigenfunctions of HB instead of the basic wavefunctions n that
appear in (3). In other words, the closed system (defined by the Hamilton operator HB) will
be opened, in the FPO formalism, by coupling the wavefunctions of the Q subspace to those
of the P subspace under the assumption P + Q = 1 where the operators P and Q project onto
the P and Q subspaces, respectively. Due to this coupling, the discrete states of the closed
system that lie above particle decay thresholds become resonance states of the open system.
The states below decay thresholds receive, as a rule, some energy shift but remain discrete.
The resonance states have, in general, a finite lifetime.

The FPO method was introduced by Feshbach [5] about 50 years ago in order to describe
particle-induced reactions on heavy nuclei in the region of high level density with excitation of
narrow compound nucleus resonances. It is impossible (and also not meaningful) to calculate
all the matrix elements in the two subspaces as well as those for the coupling matrix V .
Instead, Feshbach used statistical methods in order to describe the narrow states of the Q
subspace (compound nucleus states) and their coupling to the continuum. He treated exactly
only the so-called direct (fast) reaction part. In this manner, it was possible to formulate a
unified theory of nuclear reactions, i.e. a unified description of the fast direct reaction part and
the much slower compound nucleus reaction part.

The situation is another one for particle-induced reactions on light nuclei due to their low
level density. In this case, it is possible today to perform the calculations in the Q subspace
with the same accuracy as the calculations for the corresponding closed system (Q = 1). Also
the individual coupling matrix elements vk(ω) can be calculated [17, 21]. These calculations
represent therefore a unified description of structure and reaction phenomena [16, 17, 19].
They allow us to draw general conclusions on the behavior of open quantum systems under
different conditions, i.e. by controlling them in a broad parameter range.

The known properties of the narrow resonance states (compound nuclear states) in heavy
nuclei prevented, for many years, the application of the shell model (elaborated for light atoms)
to the description of nuclear spectra. The difference between atoms and nuclei, as they were
known more than 50 years ago, is the low level density of atoms and the high level density of
the compound nucleus states to which the shell model is difficult to apply. Today we know
that the difference is not between atoms and nuclei, but between systems with low and high
level densities: heavy atoms with high level density and light nuclei with low level density
do exist and show, in each case, the features characteristic of systems with the corresponding
level density. The recent experimental results on phase lapses [22] in the transmission through
quantum dots seem to be a hint at a similar situation in mesoscopic systems. The so-called
mesoscopic features appear only at low level density while they are washed out at high level
density.

The power of the FPO formalism is its transparency. Most interesting is the direct
appearance of the non-Hermitian Hamiltonian Heff that describes the localized part of the
system (Q subspace) including its coupling to the extended environment (P subspace). It is
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possible therefore to relate the obtained numerical results directly to the specific characteristics
of a non-Hermitian operator. Vice versa, the role of the characteristics of Heff can be studied
by controlling the system by means of external parameters. Using these results the parameter
range to obtain desired effects, by means of manipulation, can be extended. An example is the
high-order harmonic generation in a driven two-level atom. By using scaling laws, one may
extend the parameter range to, for instance, that characteristic of solid-state systems in strong
fields [23].

The symmetric non-Hermitian operator Heff has a singularity when two (or more) of its
eigenvalues coincide. In the mathematical literature, these points are called exceptional points
[24]. Here, also the two corresponding eigenfunctions collapse. In the physical literature,
the role of these singular points is another one. Although they determine the dynamics of the
system, they are not distinguished from the neighboring points by dramatic effects seen in
observable quantities. Correspondingly, they are called only seldom ‘exceptional points’ in
the physical literature. They are called often (true) crossing points in order to express their
relation to the well-known avoided level crossing phenomenon, or branch points in order to
express the different physical branches (such as level repulsion and width bifurcation) that
originate at these points, or double poles of the S matrix when the scattering problem is
considered. Controlling the physical system by an external parameter, a dramatic reduction of
the number of eigenstates does not occur at the singular point (in contrast to the assumptions
for the exceptional point). Instead, a so-called associated eigenvector appears due to the Jordan
chain relations at the singular point as well as a phase jump [25]. Accordingly, the observable
quantities change smoothly when passing the singularity.

In the present paper, the description of open quantum systems by using the FPO formalism
will be considered in detail. The main body of the paper consists of three sections. In the
first part, the non-Hermitian Hamilton operator Heff characterizing an open quantum system
is given. Formally, it contains a first-order term and a second-order one. The eigenvalues zλ

are complex and provide not only the energies of the resonance states but also their widths
(lifetimes). The eigenfunctions φλ are biorthogonal. The crossing points of eigenvalue
trajectories are singular points at which the two corresponding eigenfunctions of Heff are
linearly dependent, and associated algebraic eigenvectors appear due to the Jordan chain
relations. In approaching the crossing points, the phases of the eigenfunctions of Heff lose
their rigidity. The phase rigidity varies between rλ = 1 in the regime of well isolated
resonances and 0 at the crossing point. The variation of the phase rigidity as a function of
external parameters is the main difference between the physics based on non-Hermitian and
that based on Hermitian Hamilton operators. By encircling the crossing point of eigenvalue
trajectories, its topological structure can be studied. The phase related to the encircling differs
from the Berry phase by a factor 2. This difference is related to the fact that the Berry
phase around the diabolic point is related to the standard first-order interaction term of the
Hamiltonian. The phase around the crossing point in the complex plane is however related to
the second-order interaction term of Heff that is dominant at the crossing point. Finally, an
expression for the time evolution operator is given in this first part of the paper.

The second part of the present paper is devoted to the question whether and to which extent
the properties described by Heff survive when the full problem in the total function space with
the Hermitian Hamilton operator H is solved. First the solution �E

c of the whole problem
(H − E)�E

c = 0 is derived by using the FPO formalism and, by using �E
c , an expression for

the scattering matrix is obtained. Inside the localized part of the system, the solutions �E
c can

be represented in the set {φλ} of eigenfunctions of Heff . Due to this representation the solutions
�E

c , and also the resonance part of the S matrix, contain direct hints at the non-Hermitian
Hamiltonian Heff . An expression for the phase rigidity ρ of �E

c is derived that varies between
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1 (for well isolated resonances) and 0 (in the regime of overlapping resonances). The phase
rigidity ρ is directly related to the dynamics of open quantum systems which, therefore, can
be manipulated by external parameters. The influence of neighboring resonance states onto
one another, expressed quantitatively by ρ, may be interpreted as the internal impurity of
the system. This impurity depends, above all, on the degree of overlapping of the resonance
states and does not vanish at zero temperature. In the regime of overlapping resonance
states, spectroscopic reordering processes (dynamical phase transitions) occur due to width
bifurcation and resonance trapping. Finally, the brachistochrone problem is discussed.

In the third part, the internal impurity of open quantum systems in the regime of
overlapping resonances is considered by means of concrete examples. The results obtained
are compared with those obtained in the framework of other approaches used in some special
cases, and with existing experimental data. First, the decay rates at high level density are
derived. Since the decay does not occur exponentially when the individual resonance states
overlap with neighboring states, the decay rate depends on time, generally. Atomic spectra
can be manipulated by means of lasers in a broad parameter range due to the existence of
branch points (double poles of the S matrix). The transmission through small quantum dots
is enhanced just below the threshold for opening a new channel where the phase rigidity ρ

is reduced. The anticorrelation between transmission and phase rigidity ρ can be seen in all
considered cases. Further, it is looked at the interesting phenomenon of bound states in the
continuum. It is related to the avoided level crossing phenomenon and causes a stabilization
of the system at certain parameter values. The phase lapses observed experimentally are
discussed from the point of view of resonance trapping. The many experimental data on
dephasing can surely be related to the non-rigid phases of the eigenfunctions φλ of the non-
Hermitian Hamilton operator Heff . Finally, some remarks on open quantum systems with a
non-symmetric non-Hermitian Hamiltonian are given.

The results are summarized in section 5. The unique strength of the FPO formalism
consists of the following. First, the many-body problem can be solved in the same manner
as for discrete states, including the computation of the coupling matrix elements between
discrete and scattering states. Second, the direct relation of observables to the non-Hermitian
Hamilton operator Heff allows, on the one hand, their interpretation from the point of view of
the specific properties of non-Hermitian operators. On the other hand, knowing the specific
features of non-Hermitian operators, especially the position of their singularities, it becomes
possible to manipulate open quantum systems with the aim to receive a system with desired
properties.

2. Characteristics of open quantum systems

2.1. The non-Hermitian Hamilton operator

Characteristic of an open quantum system is the interaction of its states via a common
environment. The environment consists, by nature, of a continuum of scattering
wavefunctions: the system itself is localized in space while the environment is extended
up to infinity. The Hamilton operator of an open quantum system consists therefore of a
first-order and a second-order interaction term,

Heff = HB +
∑
C

VBC

1

E+ − HC

VCB. (4)

Here, HB is the Hamilton operator describing the closed (isolated) system with discrete states,(
HB − EB

i

)
�B

i = 0, (5)

6
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G
(+)
P ≡ (E+ − HC)−1 is the Green function in the continuum and VBC, VCB describes the

coupling of the closed system to the continuum. Further, HC is the Hamiltonian describing
the environment of decay channels. The wavefunctions ξc

E of the scattering states (channel
wavefunctions) follow from

(HC − E)ξc
E = 0. (6)

The solutions to (5) are orthonormalized according to the Kronecker delta δik and those to (6)
according to the Dirac δ function δ(E − E′) in each channel c.

The Hamiltonian (4) expresses formally the embedding of the system with N discrete
states into K continua of scattering states. It appears in the description of open quantum
systems as will be shown in section 3, where expression (4) will be derived. In the present
section, we are interested in the mathematical properties of Hamilton operators of the type
(4) as well as in their eigenvalues and eigenfunctions. The knowledge of these properties
allows us to receive an understanding for many unexpected and often counterintuitive physical
properties of open quantum systems.

The Hamilton operator Heff is symmetric and non-Hermitian with

Re
{〈

�B
i

∣∣Heff

∣∣�B
j

〉} = 〈
�B

i

∣∣HB

∣∣�B
j

〉
+

1

2π

∑
c

P
∫ ∞

εc

dE′ γ̂ c
i γ̂ c

j

E − E′

≡ 〈
�B

i

∣∣HB

∣∣�B
j

〉
+ Re(Ŵij ), (7)

Im
{〈

�B
i

∣∣Heff

∣∣�B
j

〉} = −1

2

∑
c

γ̂ c
i γ̂ c

j ≡ Im(Ŵij ), (8)

where

γ̂ c
i =

√
2π

〈
ξ c
E

∣∣V ∣∣�B
i

〉 =
√

2π
〈
�B

i

∣∣V †∣∣ξ c
E

〉
(9)

are the coupling matrix elements of the discrete states i (following from (5)) to the decay
channels c (described by (6)). One has i = 1, . . . , N and c = 1, . . . , K , where N is the number
of discrete states and K is the number of different (elastic and inelastic) decay channels each of
which consists of scattering wavefunctions normalized according to the Dirac δ function. Due
to the coupling between the two subspaces, the discrete states of the system become resonance
states which have, mostly, a finite lifetime.

The eigenvalues and eigenfunctions of HB contain the interaction u of the discrete states
which is contained in HB . This interaction is of standard type in closed (isolated) systems and
may be called therefore the internal interaction. It contains, generally, also the contributions
from the many-body forces. The eigenvalues and eigenfunctions of Heff contain additionally
the interaction v of the resonance states via the common continuum (v is used here instead
of the concrete matrix elements of the second term of Heff). This part of the interaction is,
formally, of second order and may be called the external interaction. It plays an important
role in the regime of overlapping resonance states.

The standard approximation in quantum mechanics is the assumption that the Hamilton
operator Heff is Hermitian. That means, effective forces are introduced by defining an
effective Hermitian Hamilton operator Hh

eff . The matrix elements of Hh
eff correspond to (7).

However in the standard calculations for concrete systems, Hh
eff is not obtained from (7), but

determined phenomenologically. The difference between the effective forces and the original
ones calculated from HB may be rather large. Neglecting the non-Hermitian term of Heff

corresponds to the assumption that Im
{〈

�B
i

∣∣Heff

∣∣�B
j

〉} = 0. This assumption can be justified
only for low-lying discrete states that are not directly coupled to the scattering wavefunctions
of the environment.
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In the present paper, the non-Hermiticity of Heff is taken into account and the complex
matrix elements

〈
�B

i

∣∣Heff

∣∣�B
j

〉
are calculated in a straightforward manner. In this way, the

nontrivial topological structure of the continuum is taken into account. It causes nonlinear
effects in the regime of overlapping resonance states. Under certain conditions, the second-
order term of Heff may become the leading term (see section 2.3).

2.2. Eigenvalues and eigenfunctions of Heff

The operator Heff , equation (4), is symmetric. Its eigenvalues zλ and eigenfunctions φλ are
complex,

(Heff − zλ)φλ = 0. (10)

The eigenvalues provide not only the energies Eλ of the resonance states but also their
widths λ,

zλ = Eλ − i

2
λ. (11)

The eigenvalues of states below particle decay thresholds are real (according to λ = 0), while
those of states above thresholds are complex, generally (with λ �= 0). Since the operator
Heff depends explicitly on energy E, so do its eigenvalues zλ and eigenfunctions φλ. Far from
thresholds, the energy dependence is weak, as a rule, in an energy interval (around Eλ) of the
order of magnitude of the width of the resonance state.

The eigenfunctions φλ of Heff are biorthogonal, and 〈ψλ| = 〈φ∗
λ| because of the symmetry

of Heff . The normalization condition 〈φ∗
λ|φλ〉 = (φλ)

2 fixes only two of the four free
parameters [25]. This freedom can be used in order to provide a smooth transition from an open
quantum system (with, in general, nonvanishing decay widths λ of its states and biorthogonal
wavefunctions) to the corresponding closed one (with λ → 0 and real wavefunctions that are
normalized in the standard manner): 〈φ∗

λ|φλ〉 → 〈φλ|φλ〉 = 1 if VBC, VCB → 0 in (4). That
means, the orthonormality conditions can be chosen as

〈φ∗
λ|φλ′ 〉 = δλ,λ′ (12)

with the consequence that

〈φλ|φλ〉 = Re(〈φλ|φλ〉)
Aλ ≡ 〈φλ|φλ〉 � 1

(13)

〈φλ|φλ′ �=λ〉 = i Im(〈φλ|φλ′ �=λ〉) = −〈φλ′ �=λ|φλ〉∣∣Bλ′
λ

∣∣ ≡ |〈φλ|φλ′ �=λ| � 0.
(14)

In the regime of overlapping resonances, one has Aλ > 1 and
∣∣Bλ′

λ

∣∣ �= 0 due to the second
term of (4), i.e. due to the interaction of the resonance states via the continuum. The strength
of this interaction is given by the non-diagonal matrix elements of (4). The relation

∣∣Bλ′
λ

∣∣ �= 0
means that the two eigenstates λ and λ′ are not orthogonal to one another.

Using the eigenfunctions of Heff , the coupling matrix elements of the resonance states to
the decay channels read

γ c
λ =

√
2π

〈
ξ c
E

∣∣V |φλ〉 =
√

2π〈φ∗
λ|V †∣∣ξ c

E

〉
. (15)

In contrast to (9), the coupling matrix elements (15) contain the feedback from the continuum
of scattering wavefunctions on the system. One has [26]

λ = 1

Aλ

∑
c

∣∣γ c
λ

∣∣2 �
∑

c

∣∣γ c
λ

∣∣2
. (16)

8
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The relation λ = ∑
c

∣∣γ c
λ

∣∣2
can be justified only for isolated resonance states λ for which

Aλ ≈ 1.

2.3. Crossing points in the complex plane (exceptional points)

In contrast to the trajectories of the real eigenvalues EB
i (X) of a Hermitian Hamilton operator

(where X is a certain parameter), those of the complex eigenvalues zλ(X) of a non-Hermitian
operator may cross. In order to illustrate this statement, let us consider the Hamilton operator

Ĥ =
(

ε1 ω

ω ε2

)
, Ĥ = Ĥ T , (17)

where ελ are complex and stand for the energies and widths of two isolated resonance states,
λ = 1, 2. The interaction ω between the two states is complex, generally. Both, ελ and ω,
may depend on a parameter X by means of which the system properties can be controlled.
The restriction to the 2 × 2 Hamilton operator Ĥ in (17) is justified by the fact that we are
interested here in the case when two eigenvalue trajectories zλ(X) and zλ′(X) cross (or nearly
cross) at a certain critical value X = Xcr. At Xcr, the distance to all the other eigenvalue
trajectories is relatively large such that they do (almost) not influence the crossing scenario of
the two states λ and λ′.

The eigenvalues of (17) are

E± = E0 ± 1
2

√
(ε1 − ε2)2 + 4ω2 = E0 ± ω

√
Z2 + 1 (18)

with

E0 = ε1 + ε2

2
, Z = ε1 − ε2

2ω
. (19)

The two trajectories E+(X) and E−(X) cross when Z2 ≡ Z2
c = −1, i.e. when (ε1−ε2)/(2ω) =

±i.
The eigenfunctions of Ĥ at the branch (crossing) point are linearly dependent

φcr
+ → ±iφcr

−, φcr
− → ∓iφcr

+ . (20)

This relation follows from analytical studies [16, 25, 27–29] as well as from numerical studies
on a realistic system (laser-induced continuum structures in atoms [30]). At the crossing point,
a phase jump of the wavefunction by π/4 appears. Here, Aλ → ∞,

∣∣Bλ′
λ

∣∣ → ∞. Furthermore,
in spite of the fact that the two wavefunctions φcr

+ and φcr
− at the crossing point are linearly

dependent on one another, there are two different wavefunctions also at this point. The right
and left eigenvectors are supplemented, at the crossing point, by corresponding associated
vectors (algebraic eigenvectors) φcra

± defined by the Jordan chain relations [25],

[Ĥ (Zc) − E0]φcr
± = 0, [Ĥ (Zc) − E0]φcra

± = φcr
± . (21)

It should be remarked that (10) with the non-Hermitian Hamiltonian (17) can be rewritten
into a Schrödinger equation with the Hermitian Hamiltonian HB and a nonlinear source term
[29]. The nonlinearities arise from the quantities Aλ = |φλ|2 defined in (13). They are large
when the resonance states strongly overlap. This equation gives, on the one hand, relation
(20) between the eigenfunctions at the crossing point [29]. On the other hand, the equation
becomes linear in the limit Aλ → 1, i.e. in the standard Hermitian quantum mechanics.
Thus, the two limiting cases are correctly described. That means, the non-Hermiticity of
the Hamiltonian describing the open quantum system can be simulated partly by a nonlinear
Schrödinger equation with Hermitian Hamiltonian.

In the mathematical literature, the crossing points are called mostly exceptional points
[24]. In these papers, the control of the open quantum system in approaching the crossing
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point and the associated vectors (21) are usually not considered. Hence, the relations between
the two wavefunctions at the exceptional point may (and do) differ from those given in (20),
e.g. [31, 32]. Furthermore, the phase jump of the wavefunction need not to be considered
when only the exceptional point is considered. As a consequence, the state at the exceptional
point may be interpreted as a chiral state [33] what is not in contradiction to (20). However
controlling the system in approaching the crossing point, the phase jump destroys this simple
interpretation.

In the physical literature, different notations are used for the crossing points, e.g. branch
points [29], hidden crossings [34], double poles of the S matrix [30, 35, 36]. The different
notations are a hint at the great role they play in physical systems. Indeed, they are responsible
for the avoided level crossings appearing in their vicinity and, consequently, for the dynamics
of open quantum systems.

An essential difference between Hermitian and non-Hermitian quantum mechanics is that
all quantities in Ĥ , equation (17), are real in Hermitian physics while they are complex in
non-Hermitian physics. As a consequence, (ε1 − ε2)

2 + 4ω2 is always larger than zero for
Hermitian operators (with nonvanishing ω) and ω

√
Z2 + 1 is real, leading to level repulsion.

The corresponding point of the avoided level crossing is called usually diabolic point.
For non-Hermitian operators, ω

√
Z2 + 1 may take any value, including a purely real

value, a purely imaginary one and zero. Hence, the avoided level crossing phenomenon in
the complex plane is much richer than that in the real plane: it appears not only in Re(zλ) (if
ω

√
Z2 + 1 is real) but also in Im(zλ) (if ω

√
Z2 + 1 is imaginary). Correspondingly, we have

level repulsion in the first case and width bifurcation in the second case, i.e. different physical
situations in approaching the crossing (branch) point under different conditions.

In the case of narrow resonance states and (almost) real ω, the levels repel in energy. This
behavior is similar to that what is well known for discrete states: level repulsion characterizes
the tendency of the system to avoid clustering. When, however, the imaginary part of ω is
sufficiently large, width bifurcation appears. In this regime, the levels attract each other in
energy, what means there is a tendency to form level clusters (when the interaction via the
continuum is large). Controlling the system by a second parameter, the crossing (branch) point
in between the two scenarios with level repulsion and width bifurcation can always be met.

As a numerical example for the avoided level crossing phenomenon, we refer here to the
calculations performed for a double quantum dot (billiard) [27, 28]. Two eigenvalues and the
corresponding eigenfunctions of Heff are shown in figures 1 and 2 as a function of the coupling
strength v between the double quantum dot and the two attached leads (corresponding to
K = 2 channels). The eigenfunctions are given in the representation

|1〉 =
⎛
⎝a

0
b

⎞
⎠ , |3〉 =

⎛
⎝ b

0
−a

⎞
⎠ . (22)

The eigenvalue pictures show the characteristic features seen in many calculations. When
the length L of the wire that connects the two single dots (billiards) is equal to the critical
value Lc, the two eigenvalues 1 and 2 cross at v = 1. In the two figures, L �= Lc and the two
eigenvalues avoid crossing in the complex plane. In figure 1, L > Lc. Here, the positions
in energy of the resonance states avoid crossing, while their widths cross. In figure 2 with
L < Lc, we see the opposite behavior: the positions cross while the widths do not cross at
v = 1. In both cases, the widths bifurcate at v > 1. At the critical point, the norm of the
eigenfunctions diverges and their phases jump by ±π/4.

Similar results for the eigenvalues and eigenfunctions of Heff are obtained numerically
by using the Hamiltonian (17), see [29]. They agree with the results of analytical studies [25].
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Figure 1. The evolution of the eigenvalues z1 (solid lines) and z3 (dashed lines) (a) and (b) and of
the components a = |a| eiα (dashed lines) and b = |b| eiβ (solid lines) of the eigenfunctions 1 and
3 (c) and (d) of the effective Hamiltonian Heff for a double quantum dot (billiard) as a function
of the coupling strength v to two (identical) attached leads. The eigenvalue trajectories cross at
Lc = 1.4645 under the conditions chosen in the calculation. In the figure L = Lc + 0.01, Re(z1)

and Re(z3) avoid crossing while Im(z1) and Im(z3) cross. At the critical value of v, |a|  1,

|b|  1 and the phases jump by π/4. Figure taken from [27].

There is strong evidence therefore to state that the results shown in figures 1 and 2 are generic.
They can be seen not only as a function of the coupling strength v, but in any parameter that
influences the value of the non-diagonal matrix elements of (17).

2.4. Phase rigidity of the eigenfunctions of Heff

The normalization condition (12) entails that the phases of the eigenfunctions of Heff in the
overlapping regime are not rigid: the normalization condition 〈φ∗

λ|φλ〉 = 1 is fulfilled, in this
regime, only when Im 〈φ∗

λ|φλ〉 ∝ Re φλ · Im φλ = 0, i.e. by rotating the wavefunction through
a certain angle βλ. The phase rigidity defined by

rλ = 〈φ∗
λ|φλ〉

〈φλ|φλ〉 = 1

(Re φλ)2 + (Im φλ)2
= 1

Aλ

(23)

is a useful measure [37, 38] for the rotation angle βλ. When the resonance states are distant
from one another, it is rλ ≈ 1 due to 〈φλ|φλ〉 ≈ 〈φ∗

λ|φλ〉. In approaching a branch point in the
complex energy plane [27, 29], we have Aλ → ∞. Therefore 1 � rλ � 0. Thus, the phase
rigidity rλ of the eigenfunctions of Heff is reduced in the regime of overlapping resonance
states, while it is well preserved for isolated ones at low level density.
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Figure 2. The same as figure 1 but L = Lc − 0.01. In this case, Re(z1) and Re(z3) cross while
Im(z1) and Im(z3) do not cross. At the critical value of v, it is |a|  1, |b|  1 and the phases
jump by −π/4. Figure taken from [27].

The phase rigidity rλ is a measure for the degree of alignment of one of the overlapping
resonance states with one of the scattering states ξc

E of the environment. This alignment
takes place at the cost of at least one other state that decouples, to a certain extent, from
the environment. The alignment is enabled by the interaction of the states via the common
continuum, i.e. by the second (non-Hermitian) term of the Hamiltonian (4). According to this,
it occurs only in the regime of overlapping resonance states. Another notation for alignment
of states is width bifurcation or resonance trapping.

The freedom to align some states of the system to the scattering states of the environment
does not exist in a closed quantum system described by a Hermitian Hamiltonian with
discrete states. Here Aλ = rλ = 1 and Bλ′

λ = Bλ
λ′ = 0 due to the normalization condition

〈φλ|φλ′ 〉 = δλλ′ . Hence, the two wavefunctions φλ and φλ′ �=λ of a closed system are always
orthogonal to one another, in contrast to those of an open quantum system.

Formally, the phenomenon of width bifurcation (alignment of states to the environment)
is analogous to level repulsion in energy, i.e. to the repulsion of the real parts of two
eigenvalues of Heff at a critical value of the control parameter. According to the eigenvalue
equation (18), width bifurcation is caused by Im(ω

√
Z2 + 1) while level repulsion is caused

by Re(ω
√

Z2 + 1). In contrast to level repulsion in energy, width bifurcation occurs however
by means of the rotation of the eigenfunctions of Heff under the influence of the scattering
wavefunctions of the environment. In other words, level repulsion is caused by the internal
interaction contained in HB (and effectively also by the principal value integral of the external
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interaction). Width bifurcation, however, is caused by the external interaction of the states via
the continuum in which the feedback of the coupling to the continuum is contained.

2.5. Topological structure of the crossing (exceptional) points

The topological structure of the branch points in the complex plane (also called crossing
or exceptional points) is nontrivial. Theoretically, it is studied in different papers, e.g.
[25, 27, 31, 39–43]. In these papers, the mathematical properties are emphasized, and
the singular points are called mostly exceptional points. In all these papers, the geometric
phase of the eigenvectors of non-Hermitian complex operators has been considered for paths
in parameter space that encircle the branch point. In the case of the symmetric complex 2 × 2
matrix Hamiltonian (17), the geometric phase is topological [44].

In the papers [25, 31, 41], the studies are performed on the basis of the symmetrical toy
model (17)–(19), see also [45]. In [27, 40], a realistic open system with symmetrical Heff and
with two and three states, respectively, is considered. As a result, a cycle around the branch
(exceptional) point has to be performed four times in order to produce one full 2π circle in
the geometric phase. That means, the branch point has to be encircled two times more than a
diabolic point in order to restore the wavefunction. For illustration, the results for surrounding
a branch point can be represented in the following manner. According to (20)

1. Cycle: E± → E∓ φ± → ±iφ∓

2. Cycle: E∓ → E± ±iφ∓ → −φ±

3. Cycle: E± → E∓ −φ± → ∓iφ∓

4. Cycle: E∓ → E± ∓iφ∓ → φ±.

(24)

The difference between the geometric phases of a diabolic and a branch (exceptional)
point does not have any relation to the fact that the branch point is a true crossing point of
eigenvalue trajectories in contrast to the diabolic point, since the singular point is encircled at
a certain distance, in any case. The difference between the geometric phases in the two cases
consists rather in the following. In the case of the diabolic point, the Hamiltonian HB of the
system contains only the internal interaction u. In the case of the branch (exceptional) point,
however, the Hamiltonian is Heff which contains additionally a second-order term arising
from the coupling to the continuum (external interaction v, see (4)). At the branch point, this
second-order term becomes the leading term, see section 2.3. Hence, the difference between
the geometric phases in the two cases with HB and Heff , respectively, illustrates once more the
importance of the interaction via the continuum when the quantum system is open.

The topological structure of the diabolic and branch points has been studied experimentally
on microwave cavities. The results show the Berry phase in the case of the diabolic point [46]
and the four-fold winding (24) in the case of the branch point [32], in full agreement with the
theoretical studies.

In another experiment [33], the phase difference between the two eigenvectors in
approaching the branch point has been studied. As a result, the phase difference between
the two modes changes from π at large distance between them to π/2 in approaching the
branch (exceptional) point. This result has been explained by the authors [33] as observation
of a chiral state by means of the assumptions that there is only one state at the exceptional
point (and not two as follows from the Jordan chain relations (21)), that this state is a chiral
one (in spite of the phase jump occurring at this point [25]) and that a single point in the
continuum can be identified experimentally.

13
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The experimental results [33] can be explained by means of the phase rigidity rλ of the
complex eigenfunctions φλ of the non-Hermitian Hamilton operator Heff [37]. The phase
rigidity drops smoothly from its maximum value r± = 1 far from the branch point (with
the phase difference π (or 2π ) between the wavefunctions of isolated resonance states) to its
minimum value r± = 0 at the branch point (with the phase difference ±π/2 according to
(20)), see section 2.4. This interpretation explains, in a natural manner, the experimentally
observed smooth reduction of the phase difference in a comparably large parameter range.
Also the phase jump occurring at the branch point (section 2.3) is not in disagreement with
the experimental data.

In this manner, the experimental results [32] prove the topological structure of the branch
points. Furthermore, the results [33] can be considered to demonstrate the (parametric)
dynamics of open quantum systems which is generated by the branch points. At and in the
neighborhood of these points, the phase rigidity rλ of the wavefunctions of the system is
reduced. In other words, a neighboring resonance state influences the considered one in the
regime of overlapping due to the coupling of both states to the common continuum.

2.6. The time evolution operator

An old problem of standard quantum mechanics based on a Hermitian Hamilton operator
is the absence of a time operator in the theory. The system is described, usually, by HB

or Hh
eff as defined in section 2.1. This theory is able to provide the energies EB

i of the
states to a high degree of accuracy since the effective forces are usually taken into account
in a phenomenological manner. However, the Hermitian Hamilton operator HB (and Hh

eff ,
respectively) is an energy operator and provides only the energies of the states in a proper
manner.

In the standard theory of the Hermitian quantum mechanics, the states have an infinitely
long lifetime. In order to calculate the experimentally well-known finite lifetimes of most
states e.g. in nuclei, corrections to this basic assumption are treated by perturbation theory.
The finite lifetimes τB

i are calculated from

B
i =

∑
c

∣∣γ̂ c
i

∣∣2 ∝ 1

τB
i

(25)

where the partial widths
∣∣γ̂ c

i

∣∣ are defined by (9). This relation follows by assuming that the
coupling of the system to the continuum does not have any feedback. By taking into account
the feedback between system and environment, relation (25) has to be replaced by (16). That
means, relation (25) used in standard quantum mechanics for the calculation of the lifetimes
τB
i holds only for isolated resonance states, i.e. for resonance states that are well separated

from neighboring ones.
In contrast to HB , the Hamiltonian Heff is non-Hermitian. Its complex eigenvalues zλ

provide not only the energies Eλ of the resonance states, but also their lifetimes τλ ∝ −1
λ .

The energy shifts �E = EB
i − Eλ and the finite lifetimes τλ of the eigenstates of Heff follow

from the principal value integral and the residuum, respectively, of the second term of the
non-Hermitian operator Heff , equation (4). They arise from the embedding of the system into
the continuum of decay channels.

Using the Wigner–Smith time delay function, the relation between λ and the time the
wave spends inside a quantum billiard with one lead attached to it is considered in [47]. As
a function of increasing coupling strength between waveguide and billiard, the time delay
functions and the decay widths λ of three resonance states have been calculated. As a result,
two of the states become long lived (trapped) due to width bifurcation while the width of the
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(a)

(b)

Figure 3. (a) Contour and surface plot of ln(τw) where τw is the time the wave spends inside the
system (Wigner–Smith time delay function). The system is a rectangular billiard with one attached
waveguide. The parameter λ stands for the coupling strength between billiard and waveguide
(increasing λ corresponds to decreasing coupling strength). The darker the plot, the larger the
time delay. (b) The motion of the corresponding eigenvalues of Heff with λ. The positions of the
resonance states for λ = 44 are denoted by squares, those for λ = 23.5 and λ = 0 by large dots.
The time delay corresponds, in any case, to the motion of the eigenvalues. The width of the state
at about ER = 38.7 first increases and then decreases with λ, while the energy shift of this state is,
finally, almost zero. Correspondingly, the wavefunction of this state at large λ is almost the same
as that at small α [47]. The wavefunction of the state moving from about ER = 39.6 to 39.0 with
decreasing λ, is mixed at small α (large coupling strength) with the wavefunction of the broad state
[47]. Figure taken from [47].

third one continues to increase for all coupling strengths. This behavior of the widths of the
states is reflected in the time delay function; see figure 3. Thus, the widths of the resonance
states have a physical meaning even in this case in which width bifurcation plays a role.

15



J. Phys. A: Math. Theor. 42 (2009) 153001 Topical Review

Let us now consider the time-dependent Schrödinger equation describing the resonance
state λ at the energy E without taking into account the interaction of the state λ with other
states in the neighborhood,

Heffφλ(t) = ih̄
∂

∂t
φλ(t). (26)

The right and left solutions φλ and ψλ may be represented by

|φλ(t)〉 = e−iHeff t/h̄|φλ(t0)〉 = e−izλt/h̄|φλ〉, (27)

〈ψλ(t)| = 〈ψ(t0)| eiH †
eff t/h̄ = 〈ψλ| eiz∗

λt/h̄, (28)

with 〈ψλ| = 〈φ∗
λ|, see section 2.2. By means of (27) and (28) the population probability of the

state λ can be obtained. It reads

〈φ∗
λ(t)|φλ(t)〉 = e−λt/h̄, (29)

and the decay rate of the state λ is

kλ(t) = − ∂

∂t
ln〈φ∗

λ(t)|φλ(t)〉 = 1

h̄
λ. (30)

Thus, the physical meaning of the decay width λ of the state λ is its relation to the decay rate
kλ and the lifetime τλ, respectively. It is independent of time t, as long as the resonance state
is not overlapped by another resonance state (as supposed in (26)).

Equations (26)–(30) show the physical meaning of the non-Hermitian part of Heff : it may
be identified with the time evolution operator. The lifetime τλ of a resonance state follows from
the eigenvalue zλ of Heff in the same manner as the energy Eλ of this state. Both quantities
are fundamentally different from the time t and the energy E. They characterize the state λ

while t and E appear as general parameters. In this theory, the width λ of the resonance state
λ appears as the uncertainty of the energy Eλ of this state.

Mathematically, the existence of the time evolution operator entails the time asymmetry
contained in the non-Hermitian Hamilton operator Heff , equation (4), of an open quantum
system. Furthermore, the energies Eλ and lifetimes τλ of the resonance states λ of an open
quantum system are bounded from (at least) below, see section 3.6 for the discussion of the
brachistochrone problem in open quantum systems.

3. Description of the open quantum system and the scattering problem

3.1. Feshbach projection operator formalism

In order to solve the scattering problem, the equation

(H − E)�E
c = 0 (31)

with the Hermitian Hamilton operator H has to be solved in the whole function space that
contains not only the wavefunctions of the localized part of the quantum system but also
those of the extended scattering states. The mathematical properties of the two wavefunction
sets are different: they are orthonormalized according to δik and δ(E − E′), respectively. It
is therefore very difficult to find the exact solutions �E

c of (31) in a direct manner, see the
Friedrichs model [1].

A very powerful method to solve (31) has been proposed by Feshbach about 50 years ago
[5]. The basic idea is to define two subspaces P and Q (with P +Q = 1 for the corresponding
projection operatorsP andQ) such that all wavefunctions of a subspace are orthonormalized in
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the same manner, either according to δik (Q subspace) or according to δ(E −E′) (P subspace).
The solutions in the two subspaces can be found by using standard methods, and the solution
�E

c can be obtained by applying P + Q = 1 to (31), as will be shown below.
Let us define the two projection operators by means of the solutions to (5) and (6),

Q =
N∑

i=1

∣∣�B
i

〉〈
�B

i

∣∣, P =
K∑

c=1

∫ ∞

εc

dE
∣∣ξ c

E

〉〈
ξ c
E

∣∣ (32)

with Q · ξ c
E = 0;P · �B

i = 0. We identify HB with QHQ,HC with PHP , and denote QHP
by VBC and PHQ by VCB (where V stands for the interaction between the two subspaces).
Thus, H = HB + HC + VBC + VCB .

Assuming Q + P = 1, a third wavefunction can be determined by solving the coupled-
channel equations with source term [21]

ω̂i = G
(+)
C VCB · �B

i , (33)

where G
(+)
C = P(E − HC)−1P is the Green function in the P subspace. In contrast to

the wavefunctions
{
�B

i

}
and

{
ξ c
E

}
, the wavefunctions {ω̂i} contain the information on the

coupling between the two subspaces (source term in (33)). Using the representation (32) of
the P operator, one gets

∑
c′

(HC − E)
〈
ξc′
E

∣∣ω̂i

〉 = − 1√
2π

· γ̂ c
i (E) (34)

with γ̂ c
i defined in (9).

Using the three function sets
{
�B

i

}
,
{
ξc
E

}
and {ω̂i}, the solution � = Q� + P� in the

total function space can be obtained in the following manner. From (31) follows

(HC − E) · P�E
c = −VCB · Q�E

c , (35)

(HB − E) · Q�E
c = −VBC · P�E

c (36)

and

P�E
c = ξE

c + G
(+)
C VCB · Q�E

c , (37)

Q�E
c = (E − Heff)

−1 · VBC · ξE
c . (38)

Here Heff is the effective non-Hermitian Hamilton operator defined in (4). Further,

�E
c = (P + Q)�E

c

= ξE
c +

(
1 + G

(+)
C VCB

) · Q�E
c

= ξE
c +

(
1 + G

(+)
C VCB

) · (E − Heff)
−1 · VBC · ξE

c (39)

and with (33)

�E
c = ξE

c +
∑
ij

(
�B

i + ω̂i

)〈
�B

i

∣∣ 1

E − Heff

∣∣�B
j

〉〈
�B

j

∣∣VBC

∣∣ξE
c

〉
. (40)

This solution is called formal solution of the problem by Feshbach [5]. Corresponding to this
statement, the distribution of �B

i and of the coupling coefficients
〈
�B

j

∣∣VBC

∣∣ξE
c

〉
is obtained

from statistical assumptions.
In [21], the solutions �E

c are calculated, for the first time, without any statistical
assumptions. Using the complex eigenfunctions φλ and eigenvalues zλ of Heff , equation (10),
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the solution �E
C of the Schrödinger equation (31) in the total function space of discrete and

scattering states reads

�E
c = ξE

c +
1√
2π

N∑
λ=1

�λ · γ c
λ

E − zλ

. (41)

Here

�λ = φλ + ωλ = (
1 + G

(+)
C VCB

)
φλ (42)

with ωλ defined by

ωλ = G
(+)
C VCB · φλ (43)

in analogy to (33), and γ c
λ defined in (15). The function �λ is the wavefunction of the

resonance state λ. Equation (41) is an exact solution of the scattering problem (31) provided
that all interactions are known analytically and Q + P = 1 holds.

According to (42), �λ ≈ φλ in the interior of the system while the asymptotic behavior of
the wavefunction of the resonance state is given by G

(+)
C VCBφλ. Therefore, the characteristic

feature of the FPO formalism consists, above all, of the fact that the scattering wavefunction
�E

c can be represented, in the interior of the system, in the set of (biorthogonal) wavefunctions
{φλ} that describe the open quantum system with the non-Hermitian Hamilton operator Heff .
In other words, the eigenfunctions φλ of the non-Hermitian Hamilton operator Heff determine
the part �̂E

c of the scattering wavefunction �E
c that is localized in the interior of the system,∣∣�E

c

〉 → ∣∣�̂E
c

〉 =
∑

λ

cE
cλ|φλ〉

cE
cλ = 〈φ∗

λ|VBC

∣∣ξE
c

〉
E − zλ

= 1√
2π

γ c
λ

E − zλ

.

(44)

The coefficients cE
cλ depend strongly on energy. Most important is however the following fact.

Due to relation (44), the physical phenomena caused by the true and avoided crossings of the
eigenvalue trajectories of Heff survive when the problem (31) in the whole function space is
solved.

Feshbach applied the projection operator formalism, about 50 years ago, to heavy nuclei
with excitation of neutron resonances (compound nucleus resonances) [5]. Here, the level
density is high (104 to 106 states in an energy interval typical for the corresponding particle–
particle interaction) and the neutron resonances are well isolated from one another in energy
due to their extremely long lifetimes. The resonance states as well as the coupling coefficients
to the continuum are treated successfully by means of statistical methods. In these studies,
the non-Hermitian Hamilton operator is not considered explicitly. It is rather approximated,
phenomenologically, by the assumptions contained in the statistical ensembles used in the
study.

The situation is another one in light nuclei where the level density is low and the resonance
states keep, to a large extent, their individual features. They cannot be treated by statistical
methods. All the coupling matrix elements have to be calculated. This is done first in [21]
for nuclei around 16O. Meanwhile, the FPO formalism is applied also to other nuclei [16, 17]
and to small quantum systems such as atoms and quantum dots (quantum billiards) [16]. In
all calculations, the solution (41) of the scattering problem (31) is obtained numerically, the
non-Hermiticity of Heff is considered explicitly, and its consequences for the dynamics of these
systems are studied. The main problem in solving the scattering problem (31) consists, in these
calculations, in a meaningful definition of the two subspaces Q (system) and P (environment)
such that the eigenvalues zλ of Heff can be identified with the energies and widths of the
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resonance states. The criteria are the following [21]: the system (Q subspace) is localized and
contains all resonance-like phenomena while the environment (P subspace) is extended and
causes the smooth part of the scattering process in the energy region considered.

The characteristic features of the FPO formalism being contained in the solutions (41)
and (44), respectively, of the scattering problem (31) consist in the following.

(i) The spectroscopic information on the resonance states is obtained directly from the
complex eigenvalues zλ and eigenfunctions φλ of the non-Hermitian Hamilton operator
Heff . zλ and φλ are energy-dependent functions, generally, and contain the influence of
neighboring resonance states as well as of decay thresholds onto the considered state λ.
This energy dependence allows us to describe decay and resonance phenomena also in
the very neighborhood of decay thresholds (section 3.2) and in the regime of overlapping
resonances (section 3.5).

(ii) The resonance states are directly related to the discrete states of a (many-body) closed
system described by standard quantum mechanics (with the Hermitian Hamilton operator
HB). They are generated by opening the system what is achieved by coupling the discrete
states to the environment of scattering states by means of the second term of the Hamilton
operator Heff . Therefore, they are realistic localized many-particle states of an open
quantum system, that have, generally, a finite lifetime when lying above the lowest decay
threshold (or inside the window of conductance), and an infinitely long lifetime when
lying below this threshold (or outside the window). The transition from resonance states
(described by the non-Hermitian Heff) to discrete states (described by the Hermitian HB)
can be controlled.

(iii) The properties of branch points in the continuum and their vicinity can be studied relatively
easy. At these points, two (or more) eigenvalues zλ of Heff coalesce. Since it is
not necessary to consider the poles of the S matrix in the FPO formalism, additional
mathematical problems at and in the vicinity of branch points are avoided.

(iv) The phases of the eigenfunctions φλ of Heff are not rigid in the vicinity of a branch point.
This fact allows us to describe the spectroscopic reordering processes in the system that
take place under the influence of the scattering wavefunctions ξE

c of the environment into
which the system is embedded.

3.2. The S matrix

By means of the solution �E
c of the scattering problem (31) it is possible to find the S matrix

[49],

Scc′ = δcc′ −
∫ 〈

χE
c′

∣∣V ∣∣�E
c

〉
E − E′ dE′

= δcc′ − P
∫ 〈

χE
c′

∣∣V ∣∣�E
c

〉
E − E′ dE′ − 2iπ

〈
χE

c′
∣∣V ∣∣�E

c

〉
.

(45)

Here, c and c′ belong to the same set of basic (uncoupled) channel wavefunctions
{
χE

c

}
. The

principal value integral depends smoothly on energy while the residuum shows a resonance-
like behavior on energy. With (41), we can write

Scc′ = δcc′ − S
(1)
cc′ − S

(2)
cc′ (46)

where

S
(1)
cc′ = P

∫ 〈
χE

c′
∣∣V ∣∣�E

c

〉
E − E′ dE′ + 2iπ

〈
χE

c′
∣∣V ∣∣ξE

c

〉
(47)
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is smoothly dependent on energy while

S
(2)
cc′ = i

√
2π

N∑
λ=1

〈
χE

c′
∣∣V |�λ〉 · γ c

λ

E − zλ

(48)

is the resonance term of the S matrix. It contains the excitation of the resonance state �λ,
equation (42), from the channel c′ with wavefunction χE

c′ (incoming wave) as well as the
decay of the eigenstate φλ of Heff into the channel c (outgoing wave) which is described by
γ c

λ , equation (15).
Relation (42) between the wavefunction �λ of the resonance state and the eigenfunction

φλ of Heff is completely analogous to the Lippman–Schwinger equation

ξE
c = (

1 + G
(+)
C · VC

)
χE

c (49)

between the two scattering wavefunctions. One arrives therefore at [49]〈
χE

c′
∣∣VCB |�λ〉 = 〈

ξE
c′

∣∣VCB |φλ〉. (50)

Using this relation, the resonance part (48) of the S matrix reads

S
(2)
cc′ = i

N∑
λ=1

γ c′
λ γ c

λ

E − zλ

≡ 2iπ
N∑

λ=1

〈
ξE
c′

∣∣VCB |φλ〉〈φ∗
λ|VBC

∣∣ξE
c

〉
E − zλ

. (51)

Here, γ c′
λ is related to the incoming wave in channel c′ while γ c

λ is related to the outgoing wave
in channel c. Although (51) contains only the product γ c

λ γ c′
λ , equation (48) shows that one of

these factors stands for the excitation of the (extended) resonance state �λ and the other one
for the decay of the (localized) eigenstate φλ of Heff .

In (51), excitation and decay of the resonance state λ take place each via one of the
channels belonging to the set of channel wavefunctions {χc

E}. While the decay occurs, in
any case, to one of the channel wavefunctions χc

E , the excitation may occur in a completely
different manner. Examples are photo-nuclear reactions and the excitation of an optically
prepared sample of ultra-cold atoms. In the first case, the process may be described by the
inverse (γ, n) reaction on the target nucleus, and the Schrödinger equation reads [21]

(H − E)�E
F = F (52)

instead of (31). The source term F describes the excitation of the state �E
F by the interaction

of the electromagnetic field with the ground state of the target nucleus. The amplitude of the
resonance part of the S matrix we are interested in, is given by [21]

Sres = 2π i
∑

λ

〈
ξE
F

∣∣VCB |φλ〉〈φ∗
λ|VBC

∣∣ξE
c

〉
E − zλ

. (53)

This expression contains the excitation of the state λ via the source term F, equation (52),
and its decay into the channel c. Both equations (31) and (52) are defined in the whole
function space (P + Q = 1) such that the Hamilton operator H appearing in these equations,
is Hermitian. In the present paper, only F = 0 will be considered, correspondingly to the
scattering process.

Expression (51) for the resonance part of the S matrix is formally the same as that of
the standard theory. In the unified theory of nuclear reactions formulated by Feshbach [5],
equation (41) is approximated by using statistical assumptions for the resonance states and
their coupling matrix elements to the continuum. Only the direct reaction part S

(1)
cc′ is treated

explicitly. In this approach, all the matrix elements involved in S
(2)
cc′ are energy independent.

The spectroscopic information is obtained from the poles of the S matrix.
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The differences of the exact expression (51) to the standard expression of the S matrix are
the following.

(i) According to (48), the resonance phenomena of the S matrix are determined by the decay
properties of the resonance states that are described by the complex eigenvalues zλ and
dual eigenfunctions φλ, φ

∗
λ of the non-Hermitian Hamilton operator Heff . Thus, the FPO

formalism provides a unified description of resonance and decay phenomena.
(ii) The spectroscopic information is obtained from the eigenvalues and eigenfunctions of the

non-Hermitian Hamiltonian Heff . It is therefore not necessary to consider the poles of the
S matrix. For comparison with the results of the standard theory, the poles of the S matrix
can be determined approximately by solving the fixed-point equations Eλ = Re(zλ)|E=Eλ

and finding λ = −2 Im(zλ)|E=Eλ
[16]. They can be determined also exactly. Examples

are given in [30, 36] for laser-induced continuum structures in atoms and in [50] for
resonance scattering on Bargmann-type potentials. However, they are not needed when
the FPO formalism is used.

(iii) The energy dependence of zλ guarantees the unitarity of the S matrix (51) at all (real)
energies E. This holds even at the energy of the branch point where the coupling matrix
elements (15) between the states λ and the scattering states ξE

c show a resonance-like
behavior [48].

(iv) In the physical observables related to the S matrix (51), the eigenvalues zλ with their full
energy dependence are contained. Due to this fact, information on the vicinity (in energy)
of the considered resonance states such as the position of decay thresholds [51] and of
neighboring resonance states [37] is contained in the S matrix and can be received. Such an
information cannot be obtained from the poles of the S matrix being (energy-independent)
numbers.

(v) Deviations from the Breit–Wigner resonance line shape and from the exponential decay
law are involved in expression (51). These deviations become important for isolated
resonance states in the long-time scale due to the fact that the decay thresholds lie at
a finite energy [51]. For example, a cusp may appear in the cross section instead of a
Breit–Wigner resonance, see figure 4. Qualitatively, this result agrees with experimental
data [52, 53]. Another example is the well-known influence of evanescent modes onto
the cross section, see figure 5 for an example. At high level density, deviations appear
even in the short-time scale due to the mutual influence of neighbored resonance states
[37], see the following sections.

(vi) The cross section obtained from the S matrix is independent of the manner the two
subspaces of the FPO formalism are defined as long as P + Q = 1 is fulfilled. However,
in order to receive the spectroscopic information, the two subspaces have to be defined in
a meaningful manner, see section 3.1.

(vii) The S matrix (51) provides results that are numerically exact. This result is proven by
a numerical analysis performed for exactly solvable potentials with a finite number of
resonances [50].

3.3. Phase rigidity ρ of the scattering wavefunction

One of the most interesting features of the FPO formalism is that the scattering wavefunction
�E

c in the interior of the system can be represented in the set of eigenfunctions φλ of Heff ,
equation (44). According to section 2.4, the phases of the eigenfunctions φλ are not rigid in
the regime of overlapping resonances. As a consequence, also the phases of the scattering
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Figure 4. Influence of the energy dependence of λ onto the line shape of a resonance in 15N + n.
Top: width λ of the resonance state λ. Bottom: line shape of the resonance λ lying in the very
neighborhood of the threshold. The width λ increases strongly at the position of the threshold
Ethr for opening the inelastic channel to which it is strongly coupled. It influences the line shape
of the resonance: the shape may change from a Breit–Wigner-like shape below the threshold to a
cusp at the threshold. The calculation is performed in the framework of the continuum shell model
for nuclear reactions [21]. The position Ei ≡ ESM

R of the discrete state is varied by hand such
that Eλ varies from Eλ1 < Ethr < Eλn where Eλk

(k = 1, . . . , n) are the different positions of the
resonance state obtained by varying Ei . All other parameters of the system are fixed. Figure taken
from [51].

states �E
c → �̂E

c inside the system will not be rigid when the resonance states overlap. This
can be seen in the following manner.

From (44) follows for the right and left scattering wavefunctions in the interior of the
system ∣∣�̂E

c

〉 =
∑

λ

cE
cλ|φλ〉,

〈
�̂E

c′
∣∣ =

∑
λ

dE
c′λ〈φ∗

λ| (54)

and

〈�̂E
c′
∣∣�̂E

c

〉 =
∑
λλ′

dE
c′λc

E
cλ〈φ∗

λ|φλ′ 〉 =
∑

λ

dE
c′λc

E
cλ (55)

due to (12). When c = c′, it follows〈
�̂E

c

∣∣�̂E
c

〉 =
∑

λ

(
cE
cλ

)2
(56)

with dE
cλ = 〈

ξE
c

∣∣V |φλ〉/(E − zλ) = cE
cλ according to (15). Since (cλE)2 is a complex number,

the normalization〈
�̂E

c

∣∣�̂E
c

〉 = 1 (57)

corresponds to a rotation with Re
(
cE
cλ

)
Im

(
cE
cλ

) = 0. The normalization has to be done
separately at every energy E due to the explicit energy dependence of the cE

cλ. Further,〈
�̂E∗

c′
∣∣�̂E

c

〉 =
∑
λλ′

dE∗
c′λ cE

cλ′ 〈φλ|φλ′ 〉. (58)
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(a)

(b)

(c )

Figure 5. Influence of an evanescent mode on the line shape of a resonance. Top: one resonance
state (solid line), middle: the ‘tail’ of a bound state (solid line) lying slightly below the threshold,
bottom: interference between the ‘tail’ of the bound state and the resonance state (solid line). The
nuclear reaction cross section σ tot is calculated for 15O + n in the framework of the continuum
shell model [21] with one open neutron channel. The dashed lines show the direct reaction part.
Because of the neighborhood to the (elastic) threshold, the resonance shape is nonsymmetric with
a comparably long tail to larger energies. Figure taken from [54].
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For c′ = c follows〈
�̂E∗

c

∣∣�̂E
c

〉 =
∑

λ

∣∣cE
cλ

∣∣2
Aλ +

∑
λ �=λ′

cE∗
cλ cE

cλ′B
λ′
λ

=
∑

λ

∣∣cE
cλ

∣∣2
Aλ +

∑
λ<λ′

(
cE∗
cλ cE

cλ′ − cE∗
cλ′ c

E
cλ

)
Bλ′

λ (59)

where definitions (13) and (14) for Aλ and Bλ′
λ , respectively, are used.

It is now possible to define the phase rigidity ρ of the wavefunctions �̂E
c in analogy

to (23),

ρ = e2iθ

〈
�̃E∗

c

∣∣�̃E
c

〉
〈
�̃E

c

∣∣�̃E
c

〉 . (60)

The quantity ρ corresponds to a rotation of �̂E
c through θ being determined by the ratio

between its real and imaginary parts. In spite of the complicated structure of ρ, it holds
1 � ρ � 0 (since 1 � (a2 − b2)/(a2 + b2) � 0 for every summand (a + ib)2 in (60)).
Equations (57) and (59) show that the definition of ρ is meaningful only if the sum of all the
overlapping states λ at the energy E is considered and, moreover, the average over energy E
of the system is performed, ρ → 〈ρ〉.

It should be underlined that the wavefunctions �̂E
c are the exact solutions of the scattering

problem in the interior of the system, equation (44), and that the phase rigidity 〈ρ〉 obtained
for these wavefunctions is related to the individual rλ (i.e. to the corresponding values Aλ and
Bλ′

λ ). The quantities rλ characterize the changes of the wavefunctions φλ of the resonance
states λ under the influence of their interaction with other resonance states via the continuum of
scattering wavefunctions ξE

c , see section 2.4. These quantities belong therefore to the internal
properties of an open quantum system. They characterize the internal impurity of the open
quantum system. This internal impurity depends on the degree of resonance overlapping and
does not vanish at zero temperature.

The phase rigidity ρ can be determined experimentally in an open microwave system
[55]. It is, indeed, a highly fluctuating quantity and is different for the wavefunctions of the
different states. However, the averaged phase rigidity depends on general properties of the
system. It may approach 〈ρ〉 ≈ 0, in agreement with the discussion above.

Originally, the notation phase rigidity ρbr is introduced in the standard quantum mechanics
by means of an arbitrary wavefunction �̃ [56],

ρbr = e2i�

∫
dr(|Re �̃(r)|2 − |Im �̃(r)|2)∫
dr(|Re �̃(r)|2 + |Im �̃(r)|2) . (61)

This expression is formally analogous to definition (60). However in the case of ρbr, the source
for the reduction of the phase rigidity is an external one, e.g. a magnetic impurity. Expression
(61) is used in analyzing experimental data, and the contribution from the internal impurity of
an open quantum system is, usually, not considered in this analysis.

3.4. Width bifurcation and resonance trapping

The phenomenon of resonance trapping is known since more than 20 years. It was found
first in numerical studies of nuclear reactions on light nuclei as a function of increasing level
density by using the FPO method (continuum shell model) [57]. In molecules, it is studied first
in [58]. The phenomenon is counterintuitive since, with increasing overall coupling strength,
most states decouple finally from the continuum.
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Figure 6. Eigenvalue trajectories of four resonance states coupled to one decay channel as a
function of the overall coupling strength α. The calculations are performed with the toy model
(62). Left: equidistant level distribution, right: random level distribution. At large coupling
strength, three states are trapped by one state. The trapping occurs hierarchically. Figure taken
from [64].

Resonance trapping is a direct consequence of the feedback between environment and
system. When the resonance states start to overlap, some reordering processes take place
in the open quantum system under the influence of the environment of decay channels, see
sections 2.3 and 2.4. Finally, the total coupling strength between system and environment
(expressed by the sum of the decay widths

∑
λ λ) is concentrated on a few states while the

remaining states are more or less decoupled from the continuum of decay channels (width
bifurcation).

Many of the following studies, e.g. [59–65], are performed on the basis of toy models
with the non-Hermitian Hamilton operator

H to
eff = H 0 − iαV V +. (62)

Here H 0 and V V + are Hermitian, H 0 characterizes the internal structure of the closed system,
V V + stands for the interaction between system and environment (continuum of scattering
wavefunctions) and the coupling strength α is an overall parameter. The rank of H 0 is equal to
the number N of states of the system, i = 1, . . . , N . The coupling matrix V is a K ×N matrix
where K is the number of channels, c = 1, . . . , K . Thus, the rank of V V + is K. At low level
density, H 0 is dominant and all N individual resonance states couple to the continuum. At
high level density with overlapping resonance states however, V V + is dominant. Here, only K
resonance states couple to the continuum and their widths increase with further increasing α.
The rest of the states effectively decouples from the environment. Thus, the simple model (62)
gives an understanding for the resonance trapping phenomenon. It describes generic features
of open quantum systems. The transition from the regime with N individual resonance states
to that with K short-lived and N − K trapped states occurs hierarchically [63, 64].

For illustration of the resonance trapping phenomenon, in figure 6 the eigenvalue
trajectories of four resonance states coupled to one channel as a function of the overall coupling
strength α in the Hamiltonian (62) are shown. First, the widths of all states increase with
increasing α. In the critical region of resonance overlapping, the resonance states approach
each other in energy and the widths bifurcate. Finally, the width of only one of the states
increases further with increasing α while the widths of all the other states decrease. The
hierarchical process of resonance trapping can clearly be seen in the figure. The time delay
function shows an analogue behavior [47], see figure 3.
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Meanwhile, the resonance trapping phenomenon has been verified experimentally in a
microwave cavity that is opened by attaching a lead to it [66]. At large opening, the decoupling
of resonance states from the continuum of scattering wavefunctions can be seen clearly.

Another interesting result is that the trapped resonance states at high level density have, in
general, more chaotic features than the individual resonance states at low level density. This is
true even without taking into account the principal value integral (7) in (4) as has been shown
in calculations with the toy model (62): when the internal Hamiltonian H 0 corresponds to
an ordered system with Poissonian spectral fluctuations, the trapped resonance states at large
coupling strength α tend to show level repulsion similar to that of the Gaussian orthogonal
ensemble, typical of chaotic systems [62]. Taking into account an imaginary part of α in
the Hamiltonian (62) would amplify the effect. This is due to the well-known fact that any
perturbation of a Poissonian distribution by a Hermitian interaction term in the Hamilton
operator induces level repulsion in the system [67].

Indeed, the spectra of nuclei at high level density provide features characteristic of chaotic
systems [68]. They are described well by the Gaussian orthogonal ensemble. However, also
short-lived states exist and induce some regularity in the system: the so-called single-particle
resonances with large decay widths are well known in nuclei. Their widths are larger by several
orders of magnitude than those of the narrow compound nucleus resonances. An impressive
example are whispering gallery modes that may be formed in microwave cavities with chaotic
as well as with regular features when they are opened sufficiently strong to the continuum of
scattering wavefunctions [20, 69]. Here, direct deterministic processes are supported when
the leads are attached in a suitable manner. They exist simultaneously with indeterministic
transport processes.

3.5. Dynamical phase transitions

The singular points at which (at least) two eigenvalues of Heff cross are decisively for the
dynamics of open quantum systems. For illustration, the cross section with N = 2 resonance
states and K = 1 channel, calculated with the toy Hamiltonian (62), is shown in figure 7. While
the cross section at low coupling strength α can be described by means of two Breit–Wigner
resonances, the cross section at large α is completely different. Here, one narrow resonance is
superimposed by a background that originates from the broad state at large coupling strength.
The transition from one picture to the other one occurs at α = 1 where the eigenvalues of the
two states coincide (crossing point). Here, the cross section has a double hump structure [48],

S = 1 + 4i
Im(zd)

E − zd

− 4
Im(zd)

2

(E − zd)2
, (63)

where z1 = z2 ≡ zd . It vanishes at the position Ed of the crossing point due to the interference
between the two terms.

The dynamics of the inelastic cross section is interesting. Here, the system is coupled
to (at least) K = 2 channels, the elastic and the inelastic channel. In order to see clearly
the resonance trapping phenomenon, the number of states should be at least N = 3 such that
one of the states can be trapped by the two states that align each to one of the channels. An
example of an inelastic process is the transmission through a quantum dot (billiard) with the
two channels corresponding to the waves in the two attached leads [28]. For illustration, the
eigenvalue trajectories as a function of the coupling strength v between quantum billiard and
attached leads as well as the transmission probability through the quantum billiard at three
different values of v are shown in figure 8. The crossing point of the eigenvalue trajectories is
at vc = 0.84 in the case considered, as can be seen from the eigenvalue pictures. At v � vc, the
transmission probability has three peaks at the positions of the resonance states, as expected
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(a)

(b)

(c)

Figure 7. The quantity |1 − S|2 determining the total cross section for N = 2 states coupled
to K = 1 channel for three values of the overall coupling strength α of the Hamiltonian (62):
α = 0.08, 1, 4 (solid lines). The Breit–Wigner curves calculated from the complex eigenvalues of
the two resonances for the same α (dashed lines). At small α (bottom), two narrow resonances
appear in the cross section that are well separated from one another. At large α (top), one narrow
resonance appears as a dip in the background caused by the broad short-lived state. At α = 1
(middle), the complex eigenvalues of the two states coincide. Here, the cross section has a double
hump structure described by (63). Only at small α, the cross section can be described by two
separated Breit–Wigner resonances. At the critical value α = 1, a dynamical phase transition takes
place. Figure taken from [64].

in the framework of the standard theory. At v ≈ vc, however, the number of peaks is reduced
to one in accordance with the resonance trapping effect and K = 2. Most interesting is the
transmission probability at v = 0.53 < vc = 0.84 where the transmission is plateau-like.
Here, the quantum billiard is transparent in a comparably large energy range. At v = 0.53,
the phase rigidity is zero (compare figure 11). This picture shows that the dynamics of the
inelastic processes is determined by the redistribution processes taking place at v < vc under
the influence of the crossing points of the eigenvalue trajectories. At v = vc, the spectroscopic
redistribution (resonance trapping) is completed.

In [65], the model (62) has been used in order to investigate analytically and numerically
if and under which conditions the transition from the low-level density scenario to the scenario
with overlapping resonance states can be understood as a phase transition. The study is
performed with M = 2N + 1 resonance states and K = 1 channels such that finally one short-
lived mode is formed after M − 1 avoided or true crossings with M − 1 resonance states. It is
shown analytically that, in the limit M → ∞, a simultaneous coalescence of all eigenvalues
occurs at a finite real value of α, when the distribution of the real eigenvalues Ek of H 0 and
the coupling matrix elements vk (i.e. the elements of the vector V ) are appropriately chosen.
The most illustrative case is a picket-fence model with equal distance between the states and
equal coupling strength of all the states to the continuum, v ≡ vk for all k. More generally,
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Figure 8. The evolution of Re(zk) (top) and Im(zk) (middle), k = 1, 3 (solid lines), k = 2 (dashed
line), of three eigenvalues of the effective Hamiltonian Heff for a double quantum dot (see [28])
as a function of the coupling strength v to two attached (identical) leads. The two eigenvalues
coalesce at vc = 0.8409. Bottom: the transmission probability through the double quantum dot
for fixed v = 0.2 (dashed line), v = 0.53 (solid line) and v = 0.83 (dot-dashed line). At small
v, the transmission has three narrow peaks at the positions of the resonance states, while there is
only one resonance peak at large v that is superimposed by a background (arising from the broad
state). At v = 0.53 < vc = 0.84, the double quantum dot is transparent in a broad energy range.
Here, the transmission is enhanced and a dynamical phase transition takes place. The calculations
are performed at E = 0. The subfigures are taken from [28].

an appropriate condition can be achieved when regions with a smaller level density of the
unperturbed states are stronger coupled to the decay channel than those with a higher level
density. Such a situation appears, for example, when the level distribution E2

k ≈ xt and the
coupling strength v2

k ≈ xr are related by 2(r + 1) = t [65]. Here, αcrit = (r + 1)/π = t/(2π).
For the picket-fence model, it is t = 2, r = 0 and αcrit = 1/π .

The condition 2(r + 1) = t is decisive for the formation of a global short-lived state at the
finite critical value αcrit [65]. If 2(r + 1) > t, αcrit → 0 in the limit M → ∞. That means,
there exists a state with large decay width already at α = 0. If however 2(r + 1) < t , it follows
αcrit → ∞, i.e. the reorganization process occurs locally and never finishes. In this case also
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an eigenvalue with large imaginary part appears, but now via a successive infinite chain of
level repulsions.

Although mathematically the limit M → ∞ is required for the simultaneous coalescence
of all eigenvalues, the evolution of the system traced by varying α along the real axis
resembles nicely all features of a second-order phase transition even for N = 100 states
(when 2(r + 1) = t) [65]. Here the coupling strength α acts as a control parameter while
the imaginary part of the large eigenvalue plays the role of an order parameter. Furthermore,
it could be shown that the relation between the distribution of unperturbed states and the
coupling strength, i.e. between r and t, has to be fulfilled only approximately. If either the
level density of H 0 or the coupling matrix V V + (or both) are additionally altered by noisy
perturbations, an abrupt transition occurs at αcrit numerically even when only a comparably
small configuration space is considered [65]. Under the condition 2(r + 1) ≈ t , all exceptional
points of the system accumulate at some finite real value of the parameter α = αcrit. In the
limit M → ∞ a perfect coalescence of an infinite number of exceptional points is succeeded
[31].

It is interesting to remark that, in the case of a phase transition, the short-lived eigenstate
λ0 is collective in the sense that the number of principle components of its eigenfunction
jumps abruptly to its maximal value at the critical value αcr, i.e. its wavefunction consists of
a (constructive) superposition of components of all eigenstates of H 0. The wavefunctions of
all the other M − 1 eigenstates of Heff , however, stay almost pure in this basis. In this sense,
the short-lived eigenmode with a large imaginary part 0/2 of its eigenvalue is an extremely
collective state. This is true, although 0/2 is much smaller than the extension of the spectrum.

The studies based on the Hamiltonian (62) show that width bifurcation and resonance
trapping are generic features of open quantum systems. According to sections 2.3 and 2.4,
the mechanism is the alignment of states to the scattering states of the environment in which
the system is embedded. It causes long-range correlations in the system, especially in the
neighborhood of branch (crossing) points, as shown above. However, there are still unsolved
problems. For example, the question whether or not true multiple exceptional (crossing) points
exist in realistic systems (described by a realistic Hamiltonian Heff) is not studied up to now.
Another open question is the relation between the phase transition discussed above and the
position of a threshold for opening a new decay channel.

The results of microscopic calculations for light nuclei show that the open nuclear system
is governed by self-organization [19, 70]. The redistribution of the spectroscopic properties
takes place, as in other quantum systems, around some critical value of the strength of the
coupling between discrete and scattering states. As a result of the redistribution, the effective
number of degrees of freedom is reduced. In the critical region of the coupling strength,
information entropy in relation to the discrete states of the closed system is created. This
result corresponds to the maximum information entropy principle. The long-lived trapped
modes have a large information entropy while the short-lived modes have a small part of the
information entropy of the whole system [70].

Similar results are obtained from a shot-noise analysis of the transport in small quantum
cavities with large openings [20]. In this case, direct processes are supported when special
states couple strongly to the attached leads, and can result in deterministic transport as signified
by a striking system-specific suppression of shot noise.

Environmentally induced quantum-dynamical phase transitions are studied experimen-
tally and theoretically by Pastawski et al [12]. The authors present a set of 13C–1H cross-
polarization NMR data, controlled by the ratio between internal interaction and system–
environment interaction strengths. These results clearly show that two dynamical regimes for
the 13C polarization exist and that the transition between these two regimes is not a smooth
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crossover. It has rather the characteristic features of a critical phenomenon, i.e. a non-analytical
dependence of the quantum dynamics on the control parameter. The oscillation period di-
verges at the quantum-dynamical phase transition. The authors developed a model (within
the Keldysh formalism) that describes the phases as well as the critical region in detail. The
phase transition is manifested not only in the observable swapping frequency but also in the
decoherence rate.

It is an interesting task to study in detail the experimental results on the dynamical phase
transition in the cross-polarization NMR data in relation to the branch (exceptional) points
in the complex plane which are responsible for the dynamics of open quantum systems.
The divergent oscillation period at the branch point is surely related to the fact that the two
eigenfunctions of Heff are linearly dependent at this point, equation (20). The question whether
or not the results can be explained also by using the FPO formalism (sections 3.1 and 3.2) or on
the basis of the toy model (62) should be investigated. The results of such a study will give a
deeper understanding of the system–environment interaction (including the feedback between
system and environment) and guidelines for the manipulation of small quantum systems.

3.6. The brachistochrone problem

The brachistochrone problem consists of finding the minimal time for the transition from a
given initial state to a given final state of the considered system. The recent discussion of the
brachistochrone problem in quantum mechanics started with the paper Faster than Hermitian
quantum mechanics by Bender et al [71]. It was shown in this paper that the time can be made
arbitrarily small when the system is described by a non-Hermitian PT symmetric Hamiltonian
(where P and T stand for parity and time, respectively). Such a phenomenon can also be
obtained for dissipative systems [72] such that the effect of a tunable passage time can be
attributed to the non-Hermitian nature of the time-evolution operator rather than to its PT
symmetry.

As a physical example of the quantum brachistochrone problem, let us consider here the
inelastic scattering on the localized part of the system, which is studied in the two-channel
case in the framework of the FPO formalism [37]. According to standard quantum mechanics
with Hermitian Hamiltonian, the inelastic scattering occurs by means of resonance states lying
at the energies Ei . The time delay is, for each state i, proportional to its lifetime (inverse
proportional to the width i of the state). Around the energies Ei , the transition through
the localized part of the system is maximal while it vanishes in between the positions of the
resonance states (if the channel wavefunctions differ only in the spatial coordinates).

This picture is true as long as the resonance states do not overlap. It breaks down in
the regime of overlapping resonances where the individual resonance states can no longer
be identified. Here, the wavefunctions of the system are partly aligned to the channel
wavefunctions such that the time for the transition from a given initial state of the scattering
system to a given final state of this system may be radically shortened. At the crossing point
of the two eigenvalue trajectories zλ, zλ′ (exceptional point), the transition time from state λ

to state λ′ vanishes. However, this is a single point in the continuum, and the transition time
at this single point cannot be observed.

For illustration, let us consider the transmission through quantum dots (billiards) with
two (almost) identical attached leads and one channel wavefunction in each lead. In this
case, the two channel wavefunctions are (almost) identical, except for the spatial coordinates.
Furthermore, the two states of the system that align each to one of the scattering states, are
also very similar to one another such that the system may become transparent.
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That this may happen, indeed, can be seen in the following manner. The resonance part
(51) of the inelastic scattering may be rewritten,

S
(2)
cc′ = 2iπ

〈
ξE
c′

∣∣V ∣∣�̂E
c

〉
(64)

by using (44). In contrast to (51), this representation of S
(2)
cc′ does not suggest the existence

of resonance peaks in the inelastic cross section. Equation (64) shows that S
(2)
cc′ is determined

by the degree of alignment of the wavefunction �̂E
c in the interior of the system with the

propagating mode ξE
c′ in the channel, i.e. by the phase rigidity ρ. According to (59), ρ is

determined by the contributions from all overlapping states at the considered energy E. It
is small when many overlapping states λ are almost aligned such that, after averaging over
energy, 〈ρ〉 → 0 in a certain finite energy region. This happens at v < vc where vc is the
critical coupling strength (at which K short-lived and N − K trapped long-lived states are
finally formed, in a hierarchical manner, and ρ ≈ 1). In the limiting case, ρ ≈ 0 is correlated
with S

(2)
cc′ ≈ 1. In contrast to the transmission via an isolated resonance state with rigid phase,

the transmission is maximal and the time delay is minimal not only at the single point E = Ei

but in the whole energy region where 〈ρ〉 ≈ 0.
A numerical study is performed [38] for the transmission through a system with three

states coupled to two identical attached leads, see figures 8 and 11 (left part). At the value
v = vpl of the coupling strength, a plateau in the transmission with S

(2)
cc′ = 1 appears. Here

ρ = 0. That means, the system becomes transparent in the whole energy window in which
the phase rigidity ρ of the scattering wavefunction vanishes. When averaged over energy, the
transmission probability is enhanced in this energy window (as compared to the results of the
theory with rigid phases of the eigenstates of the Hamiltonian). Furthermore, the time for
the transition from the initial scattering state to the final one is shortened as follows from the
eigenvalue picture (figure 8). The enhanced and accelerated transmission is described best by
a direct process. Correspondingly, the time is bounded from below in full agreement with the
fact that the crossing point of the eigenvalue trajectories (exceptional point) is at vc > vpl.

In other words, the time for traveling through the cavity does never vanish. It is bounded
from below: it cannot be smaller than the time corresponding to the transparency of the
system. In the non-Hermitian physics, it is however shorter than the traveling time obtained in
Hermitian physics with rigid phases of the wavefunctions. Thus, non-Hermitian physics allows
us to describe the quantum-mechanical brachistochrone problem in a convincing manner.

Also in the many-level case, the value vpl is smaller than the critical coupling strength
vc beyond which N − K long-lived trapped states coexist with K short-lived aligned ones
(corresponding to ρ ≈ 1). Whispering gallery modes may appear in quantum billiards with
convex boundary when the leads are attached to the billiard in a suitable manner. These modes
are relatively stable. Transmission of the system via these modes is plateau-like enhanced
while the phase rigidity ρ is reduced in the corresponding energy window, see figure 11 (right
part). The plateau is well expressed when the number of channels is small [69]. Its relation to
fast direct processes is shown in a dynamical analysis of the transport through small quantum
cavities with large opening [20].

It should be mentioned that near to vc, a new decay channel may open. The broad state
ceases to be localized in space due to its alignment with a scattering state. It is problematic
therefore to include it, together with the trapped states, into the Q subspace. However, the cross
section is independent of the manner the two subspaces are defined (as long as Q+P = 1). In
any case, ρ → 0 appears at vpl < vc, see also section 3.5. The enhancement and acceleration
of the transmission due to the reduced phase rigidity ρ are expected therefore to be a realistic
effect that can be observed.
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Recently, the quantum-mechanical brachistochrone system with a PT -symmetric
Hamiltonian is reinterpreted as a subsystem of a Hermitian system in a higher dimensional
Hilbert space [73]. As a result, the compatibility of the vanishing passage time
solution of a PT -symmetric brachistochrone with the lower bound for passage times of
Hermitian brachistochrones is demonstrated and, furthermore, a way to a direct experimental
implementation in an entangled two-spin system is shown.

These results are only at first glance in contradiction to those discussed above. There
is surely agreement at a certain point in the continuum which is, however, of measure zero.
Measurable effects are expected if the phase rigidity rλ of several neighboring states is small.
Then the phase rigidity ρ of the scattering wavefunction �E

c may vanish in a certain finite
interval of the parameter considered. Here, the passage time becomes minimal but different
from zero (as discussed above). Although bounded from below, it is generally shorter than
the passage time calculated in the standard theory with rigid phases of the eigenfunctions of
the effective Hamiltonian. The passage time is an internal characteristic property of the open
system. Up to now, the relation of these results to those of the PT -symmetric theory is not
investigated in detail, see section 4.4.

There are interesting consequences of the brachistochrone problem. First, the problem to
derive convincingly the uncertainty relation between energy and time in conventional quantum
theory with Hermitian Hamilton operator is unsolved up to now, see e.g. [74] (only the
uncertainty relation between momentum and space is derived usually in quantum mechanics
textbooks). The problem with the uncertainty relation between energy and time is expected
to become solvable in non-Hermitian quantum mechanics where both, energy and time, are
related to operators (see section 2.6). Second, the instantaneous entanglement of quantum
states occurring without any time delay is contained in the eigenfunctions of Heff that describe
the open quantum system in the framework of the FPO formalism. Further studies are needed
in order to clarify the interesting relation between the different approaches.

4. Internal impurity of the open quantum system

4.1. Decay rates at high level density

The time-dependent Schrödinger equation reads

H�̂E
c (t) = ih̄

∂

∂t
�̂E

c (t) (65)

with H defined in (31) and �̂E
c in (44). The right solutions �̂E

c may be represented, according
to (44), by an ensemble of resonance states λ that describes the decay of the localized part of
the system at the energy E,

∣∣�̂E
c (t)

〉 = e−iHeff t/h̄
∣∣�̂E

c (t0)
〉

=
∑

λ

e−izλt/h̄cE
cλ|φλ〉 (66)

with cE
cλ = 〈φ∗

λ|V
∣∣ξE

c

〉/
(E − zλ). The left solution of (65) reads

〈
�̂E

c (t)
∣∣ = 〈

�̂E
c (t0)

∣∣ eiH †
eff t/h̄

=
∑

λ

〈φ∗
λ|cE

cλ eiz∗
λt/h̄. (67)
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The coefficients cE
cλ are complex and strongly fluctuating with energy. However averaging

provides meaningful quantities, cE
cλ → ccλ. By means of (66) and (67) the population

probability

〈�̃c(t)|�̃c(t)〉 =
∑

λ

c2
cλe−λt/h̄ (68)

(averaged over a certain energy region) can be defined, and the decay rate reads [75]

kgr(t) = − ∂

∂t
ln〈�̃c(t)|�̃c(t)〉

= 1

h̄

∑
λ λc

2
cλ e−λt/h̄∑

λ c2
cλ e−λt/h̄

. (69)

The decay properties of the resonance states can be studied best when their excitation takes
place in a time interval that is very short as compared to the lifetime τλ of the resonance states.
In such a case, no perturbation of the decay process by the still continuing excitation process
will take place.

For an isolated resonance state λ, (69) becomes the standard expression

kgr(t) → kλ = λ/h̄, (70)

compare equation (30). In this case, the quantity kλ is constant in time and corresponds
to the standard relation τλ = h̄/λ with τλ = 1/kλ. It describes the idealized case of the
exponential decay law and, according to (53), a Breit–Wigner resonance in the cross section.
Generally, kgr(t) is time dependent and deviations from the exponential decay law and from
the Breit–Wigner line shape appear under the influence of neighboring resonance states and
(or) of decay thresholds. Also the background term appearing in most reactions may cause
deviations from the ideal exponential decay law, see section 3.2.

Equation (69) describes the decay rate in the regime of overlapping resonances. For
numerical examples, see [75]. The overlapping and mutual influence of resonance states is
maximal at the crossing points in the complex plane where two eigenvalues zλ and zλ′ of
the effective Hamilton operator Heff coalesce. Nevertheless, the decay rate is everywhere
smooth as can be seen also directly from (69). This result coincides with the general statement
according to which all observable quantities behave smoothly at singular points.

An interesting result is the saturation of the average decay rate kav in the regime of strongly
overlapping resonances. According to the bottleneck picture of the transition state theory, it
starts at a certain critical value of bound–continuum coupling [13, 76]. This saturation is
caused by width bifurcation [77] (formation of long-lived resonance states by resonance
trapping, see section 3.4) occurring in the neighborhood of the branch points in the complex
plane. The definition of an average lifetime of the resonance states is meaningful therefore
only for either the long-lived states or the short-lived ones. The long-lived (trapped) resonance
states are almost decoupled from the continuum of decay channels. Their widths λ are almost
the same for all the different states λ, i.e. av ≈ λ for all long-lived trapped resonance states.
It follows therefore

kav ≈ av/h̄ (71)

from (69). According to the average width av, the average lifetime of the long-lived states
can be defined by τav = 1/kav. Then (71) is equivalent to τav = h̄/av. That means, the basic
relation between lifetimes and decay widths of resonance states holds not only for isolated
resonance states (see equation (70)), but also for narrow resonance states superimposed by a
smooth background (that may originate from a few short-lived states). In the last case, the
relation holds for the averaged quantities av and τav.
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Finally we mention here the experimental data that were obtained for proton scattering on
58,60Ni about 30 years ago [78]. Lifetime measurements using the crystal blocking technique
showed that the directly measured average lifetime of compound nucleus states is significantly
larger at the bombarding energy E = 6.50 MeV than at E = 5.65 MeV. Furthermore,
the corresponding widths are substantially smaller than those of the observed structures in
the excitation functions. These results do not agree with the expectations on the basis of the
statistical approach used in the FPO formalism for heavy nuclei. According to the discussion
above they may be considered, however, as a hint at the saturation of the average decay widths
in the regime of overlapping resonances, i.e. at the resonance trapping effect.

Another interesting result is that the narrow resonance states at high level density do not
decay according to an exponential decay law [79]. Calculations for the Gaussian orthogonal
ensemble have shown that the decay of the states occurs via an algebraic law (although the
narrow states do not overlap) and that the deviation from the exponential law is especially
large in the one-channel case. This result is a hint at the fact that the trapped resonance states
differ, indeed, from the individual resonance states i at low level density.

4.2. Laser-induced continuum structures in atoms

The effects arising in the continuum spectrum of an atom in the vicinity of an autoionizing state
coupled to another autoionizing state by a strong resonant laser field are studied, some years
ago, in the framework of the FPO formalism. An analytical expression for the photoionization
cross section is derived in which the interference between the direct and resonant ionization
channels caused by the probe field, and between the transitions induced by the strong field
are taken into account [18]. The cross section is described by only a few parameters, what
is very convenient for the spectral analysis. The parameters contain characteristics of the
field-free atom as well as of the coupling field. The formulae of this approach are tested by
comparing the results with those obtained in the non-perturbative time-dependent approach
for autoionizing states in helium and with the experimental data for magnesium. In both cases,
a good quantitative agreement was found [18].

In a further study [36], the motion of the complex energies (eigenvalues of the effective
non-Hermitian Hamilton operator Heff) is traced as a function of the field strength for different
field frequencies and atomic parameters. Most interesting is the critical region where a true
or avoided crossing of the eigenvalue trajectories occurs. At this critical field intensity, the
levels repel each other in the complex plane. With further increasing intensity, the complex
energies of the states move differently. When the resonance states are coupled mainly via
one common continuum, width bifurcation dominates. When, however, the direct coupling
dominates, level repulsion along the real axis takes place. All these effects can be seen in the
non-trivial variation of the cross section of a laser-driven atom.

Calculations for the effects induced by two strong laser fields in the continuum of the
hydrogen atom are given in [30]. The coupling to the 2s, 5s, 5d, 5g states is considered in the
photo-absorption spectra of the probe field from the ground 1s state. The avoided crossing of
the quasi-levels in the laser-induced continuum structures is traced theoretically as a function
of the intensities of the strong laser fields. Under certain conditions, the quasi-levels cross and
the S matrix has a double pole.

In figure 9, the non-trivial motion of the trajectories of the complex energies in the
neighborhood of the crossing points (double poles of the S matrix) is shown for different
situations. The only trajectories which are almost not influenced by the crossing point are
those of the 5g states. The corresponding photo-absorption cross sections from the ground
state of the hydrogen atom are also very interesting due to their great diversity [30].
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Figure 9. The trajectories of the complex eigenvalues of Heff which cross at the critical values
of the laser intensities I1 and I2, respectively. The intensities as well as the complex energies are
given in units of � = �2 −�5 which is the difference of the resonance detunings of the probe field
frequency from those of the lasers. (a) I2 = 5.45 × 10−3 fixed and I1 varied, (b) I1 = 1.39 × 10−2

fixed and I2 varied, (c) I1 = 2.44 × 10−2 fixed and I2 varied and (d) I2 = 8.18 × 10−3 fixed and
I1 varied. The crossing points are marked by a circle. The trajectories show a complicated motion
with the only exception of the trajectory of the 5g state which moves linearly. Figure taken from
[30].

In another paper [80], the line shape of resonances in the regime of overlapping resonances
is studied by using the FPO formalism and the S matrix derived by means of it. A generalized
expression q̃λ for the Fano parameter [81] of the resonance state λ is derived that contains
the interaction of the state λ with short-lived and long-lived neighboring states λ′ �= λ via
the continuum. It is energy dependent. Under certain conditions, the energy-dependent
q̃λ are equivalent to the generalized complex energy-independent Fano parameters that are
introduced in analyzing experimental data on electron transport through mesoscopic systems
[82]. Narrow resonances appear mostly isolated from one another in the cross section, also
when they are overlapped by short-lived states. An analysis of q̃λ(E) of narrow resonances
allows us to study the complicated interplay between different timescales in the regime of
overlapping resonance states by controlling them as a function of an external parameter.

The cross section in the neighborhood of a crossing point of the eigenvalue trajectories
(double pole of the S matrix) is described, in the one-channel case, by (63) when the direct
scattering phase δ is zero. The second term of this equation corresponds to the usual linear
term (up to a constant factor) while the third term is quadratic. The interference between these
two parts causes the double hump structure at δ = 0. In figure 10, the cross section at the
crossing point is shown for different direct scattering phases δ. In any case, the cross section
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Figure 10. The cross section in the neighborhood of a crossing point of two eigenvalue trajectories
(double pole of the S matrix). The direct scattering phase δ is 0 (a), π/4 (b), π/2 (c) and
3π/4 (d). The dashed curves correspond to the case of the two resonance states without any
interaction between them (Breit–Wigner resonances). At δ = π/2, the cross section shows one
more or less isolated narrow resonance in the middle of the spectrum which results from the
interferences between the two resonance states. Figure taken from [80].

shows a completely other structure than expected without taking into account the coupling
between the two resonance states via the continuum (dashed lines in figure 10). Due to this
result, the interpretation of resonance data in the regime of overlapping resonances has to be
done very carefully. Reliable results can be obtained by controlling the resonance structure
by external parameters.

4.3. Transmission through small quantum dots (billiards)

An unsolved problem in standard quantum mechanics is the description of the crossover
from the regime with weak coupling between discrete and continuous states to that with
strong coupling between them. For example, an interpolation procedure between the limiting
cases with isolated resonances at low level density and narrow resonances at high level density
(superimposed by a smooth background term) is introduced in [83] for the transmission through
a quantum dot. In contrast to such an interpolation procedure, the crossover can be described
in the FPO formalism. Important is the non-rigidity of the phases of the eigenfunctions φλ

of the non-Hermitian Hamiltonian Heff and, consequently, of the scattering wavefunction �̂E
c

inside the localized part of the system.
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In [10, 37, 84], the amplitude of the transmission through a microwave cavity is considered
in the framework of the S matrix theory by using the FPO formalism,

t = −2π i
∑

λ

〈
ξE
L

∣∣V |φλ〉〈φ∗
λ|V

∣∣ξE
R

〉
E − zλ

. (72)

Here, ξE
L and ξE

R are the wavefunctions in the left and right, respectively, attached lead, and
t corresponds to the inelastic cross section from channel c′ = L to channel c = R, see
equation (51). In (72), the eigenvalues zλ and eigenfunctions φλ of Heff are contained with
their full energy dependence, see section 3.2.

For ρ = 1 and well-isolated resonance states, the transmission amplitude (72) repeats
the resonance structure of (44) of the wavefunction �̂E

C . The transmission peaks appear
at the positions Eλ ≡ Re(zλ)|E=Eλ

≈ EB
λ of the resonance states. An analogous result

holds when there is a nonvanishing background term additional to the resonance term (72) of
the transmission amplitude. In this case, the resonances appear as Fano-like resonances on
the smooth background. Mostly, they are narrow and well separated from one another. The
timescale corresponding to the background term (so-called direct part of the transmission) is,
generally, well separated from the scale corresponding to the resonance part described by (72).
Due to the different timescales of the resonance and direct processes, it is |ρ| ≈ 1 also in this
case.

The situation is another one when the resonance states overlap. In the overlapping regime,
the transmission does not show a resonance structure. Instead, it might be nearly plateau-
like [37, 38, 84]. Let us rewrite therefore the transmission amplitude (72) by means of the
wavefunction (44),

t = −2π i
〈
ξE
L

∣∣V ∣∣�̂E
R

〉
(73)

with �̂E
R being complex, in general, see equations (64) and (46). The advantage of this

representation consists of the fact that it relates the transmission directly to the degree of
alignment of the wavefunction �̂E

R with the propagating mode ξE
L in the lead, i.e. to the phase

rigidity ρ. Nevertheless, expressions (72) and (73) are fully equivalent.
The numerical results [84] obtained by using the tight-binding lattice Green function

method [8] for the transmission through microwave cavities of different shapes show exactly
the features discussed above (figure 11). In the weak-coupling regime as well as in the
strong-coupling regime, the transmission shows a resonance structure as expected from the
standard quantum mechanics. The difference between the two cases is the appearance of a
smooth background term in the strong-coupling regime which does not exist in the weak-
coupling case, and the reduction of the number of resonance peaks by two (corresponding to
the alignment of two states each with one channel in each of the two identical attached leads).

In the crossover from the weak-coupling regime to the strong-coupling one, the calculated
transmission is plateau-like instead of showing a resonance structure (figures 8 and 11).
It is enhanced as compared to the transmission probability in the two borderline cases.
Most interesting is the anticorrelation between transmission 〈t〉 and phase rigidity 〈ρ〉 (both
quantities averaged over energy) which can be seen very clearly in all the numerical results
obtained in [38, 84].

Moreover, the transmission in the crossover regime is not only enhanced. It is also
faster than the transmission calculated in standard quantum mechanics, see section 3.6 for the
brachistochrone problem. However, the time delay in the cavity cannot be smaller than that
allowing traveling through it in accordance with traveling through the attached leads, i.e. the
system may become transparent at most. This lower bound can be reached in a system with
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Figure 11. Left: the transmission probability (top) and the landscape of the phase rigidity ρ

(bottom, thin lines) for a double quantum billiard with three states over energy E and coupling
strength v. The transmission probability varies between 1 (white) and 0 (black). The distance
between the contour lines is 1/30. The minimal value ρ = 0 is surrounded by a high density of
contour lines. The highest shown contour line corresponds to ρ = 1 − 1/30. The Re(zλ) of the
three eigenstates (thick lines in both panels of the figure) are calculated at E = 0. The crossing
point is at vc = 0.500. Around v = 0.345 < vc, the phase rigidity is minimal and the transmission
maximal and plateau-like (compare figure 8). Right: the transmission probability (top) and phase
rigidity ρ (bottom) for a Bunimovich billiard as a function of energy E and coupling strength v

between billiard and attached leads. The leads are attached in such a manner that transmission
via whispering gallery modes is supported. The transmission probability and the phase rigidity
vary between 1 (white) and 0 (black). The calculations are performed in the tight-binding lattice
model [8]. Around v ≈ 0.9 − 1, the phase rigidity is minimal and the transmission is maximal.
The eigenvalue trajectories for v > 1 are shown for illustration. The subfigures are taken from
[38, 84], respectively.

the non-Hermitian Hamilton operator Heff by aligning the wavefunctions of the system with
those of the environment.

The behavior of the transmission in the crossover regime with overlapping resonance
states is a characteristic of an open quantum system with non-Hermitian Hamiltonian. It does
not correspond to the expectations of the standard quantum mechanics with rigid phases of
the eigenfunctions of a Hermitian Hamilton operator and with decay widths obtained from the
poles of the S matrix, see e.g. [83].

4.4. Bound states in the continuum

The question whether or not bound states in the continuum (BICs) exist in realistic quantum
systems is of principal interest and might be as well of interest for applications. The reason
for this interest arises from the fact that the system is stabilized at the energy of a BIC as well
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Figure 12. The trajectories of the complex energies of two atomic states obtained by varying the
laser intensity for different Fano parameters Q = �R/�c (where �R is the Rabi frequency for
the direct transition and �c for the transition via the continuum). It is Q = 0 (full line), 0.5 (long-
dashed line), 1 (short-dashed line), 5 (dotted line) and 25 (dash-dotted line). All values are given in
units of the width 2 of the resonance state 2. The laser frequency detuning � is equal to the width
2. The autoionizing width of the state 1 is a

1 = 0 (top) and a
1 = 0.22 (bottom). If a

1 = 0
(top), the two eigenvalues cross when Q = 0 while they do not cross when a

1 �= 0 (bottom). The
widths bifurcate at small Q (large contribution from the transition via the continuum) while the
levels repel in energy at large Q (small contribution from the transition via the continuum). BICs
appear only in the symmetrical case with a

1 = 0 (top) and if width bifurcation is comparable to
level repulsion (Q ≈ 1). Subfigures taken from [36].

as in its vicinity, and that the wavefunction is localized at all times inside the system in spite
of embedding it into the continuum of extended wavefunctions.

Mathematically, the existence of bound states in the continuum is shown already in 1929
by von Neumann and Wigner [85]. In 1985, Friedrich and Wintgen [86] considered the
problem by using the FPO formalism. They related the existence of BICs to avoided level
crossings, these being another quantum-mechanical phenomenon discussed by von Neumann
and Wigner [87] in 1929. As discussed in section 2.3, avoided level crossings are related to
true crossings of eigenvalue trajectories (branch points) and appear in their vicinity.

Since BICs are states that do not decay, the population probability of these states is
constant in time. This fact is called population trapping in studies on laser-induced continuum
structures in atoms [88]. Similar results are obtained [30, 36] in the time-independent approach
by using the FPO formalism and demanding a vanishing decay width for the BIC. In these
papers, the relation between BICs and the avoided level crossing phenomenon as well as the
stabilization of the system in a broad range of parameter values (characteristic of the laser)
is shown explicitly. As an example, the eigenvalue trajectories of two resonance states by
varying the laser intensity are shown in figure 12 (top). Most important is that BICs may
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Figure 13. The real parts (left) and imaginary parts (right) of the five eigenvalues zλ of the
effective Hamiltonian of a double quantum billiard as a function of the length L of the wire that
connects the two single billiards. Top: the spectra of the two single quantum billiards are identical.
The eigenvalue trajectory of the state in the middle of the spectrum crosses the energy of the
transmission zero at L = Lcr = 2.75. At this value of L, the imaginary part of this eigenvalue
vanishes at all energies. Bottom: the spectra of the two single billiards differ from one another.
There are two neighbored transmission zeros in the middle of the spectrum which are, however,
not crossed by the middle eigenvalue trajectory. Correspondingly, there is no critical value of L at
which the imaginary part of this eigenvalue vanishes. The two figures illustrate the importance of
the spatial symmetry for the appearance of a BIC. Subfigures are taken from [89].

appear at laser intensities that are relatively small and do not destroy the atom. The condition
is that the interaction of the resonance states via the continuum is comparable in value with
the direct interaction of the states (Q ≈ 1).

A similar study is performed (by using the FPO formalism) for the transmission through
a double quantum dot (billiard) where a BIC appears at that energy at which the resonant
transmission crosses a transmission zero [89]. The parameter used in these calculations for
the control of the system, is the length L of the wire that connects the two single dots. The
eigenvalue trajectories are shown in figure 13 (top) as a function of L. The widths of the states
depend strongly on L, especially around L ≈ Lcr = 2.75 where the middle eigenvalue crosses
a transmission zero. The width vanishes at L = Lcr = 2.75 and the eigenstate becomes a BIC
at this critical parameter value. Further studies are performed for the transmission through
quantum billiards of different shapes [89, 90].

Common to all these studies on the basis of the FPO formalism is the definition of a BIC
as a resonance state with vanishing width,

λ0

∣∣
(E=Eλ0 )

= 0. (74)

A necessary and sufficient condition to fulfil (74) is the decoupling of the state from all
channels of the continuum as can be seen in the following manner. The relation between λ

and the coupling matrix elements is, generally, given by relation (16) which holds true at all
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energies. As a consequence, a state being decoupled from all channels c of the continuum
according to 〈

ξE
C

∣∣V |φλ0〉 → 0 (75)

is a BIC with λ0 ≡ −2 Im(zλ0) → 0 (condition (75) is equivalent to
〈
φ∗

λ0

∣∣V ∣∣ξE
C

〉 → 0, see
(15)). The opposite case follows by considering the S matrix, see (51) for the amplitude of its
resonance part. At the position of a BIC, we have E − zλ0 → 0 and, due to the unitarity of
the S matrix, it follows (75) for all c. Thus, (75) is a necessary and sufficient condition for
the BIC when defined by (74). The advantage of definition (74) as compared to the N-level
Friedrichs model [2] in studying BICs for unstable multilevel systems is discussed in [91].

The appearance of a BIC can be traced, in the FPO formalism, as a function of a certain
control parameter X, i.e. by controlling the trajectories Eλ(X) and λ(X), see figures 12 (top)
and 13 (top). The BIC appears at the point X = X0 where λ(X0) = 0. It is even possible
to consider the vicinity of the BIC including the cases when λ(X

′) is always different from
zero and λ(X

′
0) corresponds to the minimum of λ(X

′) with a small but nonvanishing value
λ(X

′
0), see figures 12 (bottom) and 13 (bottom). This feature of the FPO technique is

invaluable for applications since the stabilization of the system (caused by the vanishing width
λ) must be known not only at the single point X0 but also in its vicinity (where λ > 0, but
small) in order to estimate the possibility of an experimental observation.

Figures 12 and 13 show very clearly the relation of BICs and BIC-like states to the
avoided level crossing phenomenon and to an external constraint, respectively. Due to the
width bifurcation, every BIC and BIC-like state appears together with at least one other state
whose width is enhanced around X = X0 and whose energy is, generally, different from Eλ0 .
Thus, the knowledge of the crossing points of eigenvalue trajectories (double poles of the S
matrix) and their vicinity allows one to find the conditions for the stabilization of the system.

In the considered cases, the condition for the exact appearance of a BIC is space reflection
symmetry of the system as can be seen from figures 12 and 13. Violation of space reflection
symmetry leads to λ(X

′
0) small but different from zero, i.e. to a violation of time reflection

symmetry. The short-lived states appearing together with the exact BICs due to width
bifurcation have the same space reflection symmetry as the BICs. However, time symmetry is
broken in this case.

In figures 12 and 13, only single points in the parameter space with real eigenvalues are
shown. According to the calculations for a double quantum billiard with a small number of
states, a surface of crossing points of the eigenvalues of Heff is defined for four parameters of
the system (see figure 2 in [27]). One expects therefore that also the BICs appear in families
when considered in a parameter space of higher dimension. The relation of these results to
those of the PT symmetric theory [92, 93] for non-Hermitian Hamiltonian systems is not
investigated up to now.

It should be underlined here that the BICs are eigenstates of a non-Hermitian Hamilton
operator, indeed, in spite of their infinite lifetime. This can be seen from the results represented
in figure 14. Here modulus and amplitude of one of the peaks of the transmission through
a double quantum dot (corresponding to a peak of the inelastic cross section) are shown as
a function of E for different values of the parameter L (being the length of the wire that
connects the two single dots). In approaching the critical value Lcr = 2.75, the peak narrows
and vanishes at L = Lcr. The phase, however, becomes more steeply in approaching Lcr

and passes into a jump at L = Lcr. That means, the BIC is nothing but a special resonance
state.

Resonance states with very long lifetimes are found recently in a two channel quantum
wire with an adatom [94]. They occur in a wide region of the parameter space and are therefore
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Figure 14. The energy dependence of the modulus |t (E)| (bottom) and of the phase arg[t (E)]/π
(top) of the amplitude t for the transmission through a double quantum billiard (in an energy
window with one transmission peak) for different lengths L of the wire connecting the two single
billiards. The motion of the corresponding eigenvalue of Heff is shown in figure 13, top, full line.
A transmission zero appears at L = 2.75 denoted by a star in |t (E)|. At the transmission zero,
the phase jumps by π . The ordinate is shifted every time by 0.1 when L is changed by 0.25. All
phases are shifted by π . Figure taken from [89].

of interest for applications. Such a state, called quasi-bound state in the continuum [94], arises
from a bound state which is slightly destabilized by the existence of the second energy band.
The nature of these states differs obviously from that of the BIC-like states although both
types of states appear in a wide parameter range.

It is interesting to remark that a phenomenon similar to the appearance of BICs in
quantum systems occurs in electromagnetic scattering. An electromagnetic wave of a specific
frequency can be trapped forever by a structure that is neither a metal cavity nor a defect in
a photonic crystal [95]. It represents, in fact, a bound state in the radiation continuum where
the electromagnetic field is trapped by the structure for an infinitely long time. Photonic
nanostructures with bound states in the radiation continuum are expected to have many
applications, similar as the BICs.

4.5. Phase lapses

In experiments [22, 96, 97] on Aharonov–Bohm rings containing a quantum dot in one arm,
both the phase and the magnitude of the transmission amplitude T = |T | eiβ of the dot can
be extracted. The results obtained caused much discussion since they do not fit into the
standard understanding of the transmission process. As a function of the plunger gate voltage
Vg , a series of well-separated transmission peaks of rather similar width and height has been
observed in many-electron dots and, according to expectations, the transmission phases β(Vg)

increase continuously by π across every resonance. In contrast to expectations, however,
β always jumps sharply downward by π in each valley between any two successive peaks.
These jumps called phase lapses were observed in a large succession of valleys for every
many-electron dot studied. Only in few-electron dots, the expected so-called mesoscopic
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behavior is observed, i.e. the phases are sensitive to details of the dot configuration. The
problem is considered theoretically in many papers [6, 7, 98–107] over many years without
solving it convincingly.

In [108], the generic features of phase lapses in the inelastic cross section are studied by
using the S matrix (51) together with the toy model Hamiltonian (62). According to the S
matrix, the phase lapses are related to the zeros of the inelastic cross section. This is due to the
following fact. When (in the two-channel case) the inelastic cross section (that corresponds to
the transmission) is zero, the whole process takes place via the elastic channel. A transmission
zero means therefore that the beam is completely reflected and the coupling strength α between
system and continuum does not play any role at this energy. Thus, abrupt jumps by π in the
phase of the transmission amplitude are associated with the occurrence of transmission zeros
and, further, the zeros of the transmission are characteristic of the isolated dot structure. They
do not depend on the strength of the coupling to the leads. A similar result is obtained from an
analysis of scattering phases in quantum dots that is performed on the basis of lattice models
[98, 99].

That means, number and location of the transmission zeros, and consequently also
number and location of the phase lapses, are determined exclusively by the distribution of
the unperturbed levels E0

i (eigenstates of H 0) and the matrix elements V c
i that characterize

their coupling to the decay channels c. They do not depend on the overall coupling strength α

(as long as the system can be described by the Hamiltonian H 0).
However, number and position of the resonance peaks do depend on α due to the resonance

trapping phenomenon. In the regime of trapped resonances (α > αc), the resonance states
are described by a non-Hermitian Hamiltonian H tr

eff that differs from Heff : (i) H 0 has to be
replaced by the Hamiltonian H 0

tr describing the N − 2 trapped states, and the corresponding
coupling vectors Vtr describing the coupling of the trapped states to the continuum, have to
be calculated, (ii) the S matrix has to be supplemented by the background term arising from
the two broad states. Neither H 0

tr nor the corresponding coupling coefficients can be obtained
analytically since the spectroscopic redistribution processes in the regime of overlapping
resonance states are related to the singular crossing points of eigenvalue trajectories at which
resonance trapping (width bifurcation) originates.

The solution of this problem is given by Feshbach [5] without considering the non-
Hermitian Hamilton operator Heff : (i) the eigenstates of H 0

tr and the coupling vectors Vtr

are described by using statistical approaches (mostly the Gaussian orthogonal ensemble) and
(ii) only the direct reaction part of the S matrix is solved exactly (unified theory of nuclear
reactions). The states of a Gaussian orthogonal ensemble differ from the states i at low level
density, indeed. They are states of a many-body random ensemble (rather than of a two-body
random ensemble) and decay according to an algebraic law when the number of decay channels
is small [79].

The trapped resonance states are more uniformly distributed than the original resonance
states as calculations on the basis of the toy model (62) have shown [62]. Furthermore, the
wavefunctions of these states differ less from one another than the eigenfunctions �i of Heff :
in the critical regime where the spectroscopic redistribution processes take place, information
entropy in relation to �i is created [70]. As a consequence, also the coupling coefficients of
these states to the continuum differ less from one another than those of the eigenstates of Heff .
Hence the zeros of the inelastic cross section and the corresponding phase lapses may show
more regularity at large coupling strength α than at small α.

The redistribution of the spectroscopic properties corresponds to a dynamical phase
transition taking place in the critical regime at v � vc, see sections 3.5 and 3.6. Hence,
the universal features observed in the phase lapses at high level density, in contrast to the
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mesoscopic features at low level density, may be considered to be a hint at the dynamical
phase transition occurring by controlling the system from low to high level density.

Recently, the problem of phase lapses is studied theoretically by using the numerical and
functional renormalization group approaches for maximal N = 4 states [6]. The results for
N = 4 resonance states obtained in this approach and those for N = 10 resonance states in the
calculations [108] on the basis of (62) and (51) agree, above all, in the fact that the widths of
two states are much larger than those of the rest of N −2 states at large resonance overlapping.
This result is, of course, nothing but the resonance trapping phenomenon.

In order to prove experimentally the results obtained from (51) and (62), the phase lapses
should be studied as a function of the degree of opening of the quantum dot, i.e. as a function
of the overall coupling strength α. Characteristic of such a study is that the number of states
of the closed system (described by HB or H 0) and their coupling matrix elements V c

i to the
continuum are fixed such that the observed results can clearly be related to the phenomenon
of resonance trapping. Under this condition, it should be possible to study the influence of
the overlapping of the resonance states onto the spectroscopic properties of an open quantum
system in a definite manner.

4.6. Dephasing

Comparing the basic ingredients of the theory of open quantum systems with the experimental
results on dephasing at very low temperature, it should first be stated that the concept dephasing
is used differently in the different papers. Within the framework of Landau’s theory of Fermi
liquids, dephasing is related to the time an electron can travel in the system before losing
its phase coherence and thus its wave-like behavior. In open quantum systems, however, the
spectroscopic properties of localized states are considered which are described by the non-
Hermitian Hamilton operator Heff . The phases of the eigenfunctions of Heff are well defined
but not rigid, generally (section 2.4).

In the following, a short discussion of the results obtained experimentally on dephasing
will be given from the point of view of an open quantum system. The discussion is qualitatively
by using the results obtained in different recent studies. It avoids to comment the many
controversial discussions that exist in the literature to this question.

In the proceedings of a recent conference, the experimental progress on the saturation
problem in metallic quantum wires is reviewed [109]. As a conclusion of this analysis, based
on all presently available measurements of the phase coherence time τφ in very clean metallic
wires, it is hard to conceive that the apparent saturation of τφ is solely due to the presence of
an extremely small amount of magnetic impurities.

The absolute value of τφ (and not just its temperature dependence) is studied in [110].
It is found that the electron dwell time is the central parameter governing the saturation of
phase coherence at low temperature. The condition for the occurrence of saturation is found
to be τ sat

φ ≈ τd , where τ sat
φ is the saturated coherence time and τd is the dwell time. This

simple behavior holds over the three orders of magnitude covered by the available data in the
literature. According to the authors, τφ is found to be intrinsic to the physics of the quantum
dots, but not due to the coherence time of the electrons themselves. Furthermore, it is found
[110] that τφ is strongly influenced by the population of the second electronic subband in the
quantum well.

According to [111], one consensus has been reached by several groups, saying that the
responsible electron dephasing processes in highly disordered and weakly disordered metals
might be dissimilar. That means, while one mechanism is responsible for dephasing in
weakly disordered metals, another mechanism may be relevant for the saturation (or very
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weak temperature dependence) of τφ found in highly disordered alloys. According to the
authors of [111], the intriguing electron dephasing is very unlikely due to magnetic scattering.
It may originate from specific dynamical structure defects in the samples.

In [112], experimental data from many different publications for τ 0
φ obtained in metallic

samples with different diffusion coefficients are collected. The conclusion is that low-
temperature saturation of τφ is universally caused by electron–electron interactions. The
authors found seemingly contradicting dependencies of τ 0

φ on the diffusion coefficient D in
weakly and strongly disordered conductors. While the trend less disorder–less decoherence
for sufficiently clean conductors is quite obvious, the opposite trend more disorder–less
decoherence in strongly disordered structures is unexpected.

All these statements obtained from the results of many experimental studies fit qualitatively
into the expectations received by considering the quantum dot as an open quantum system.
First of all, the saturation of τφ appears in a natural manner since most states of an open
quantum dot have a finite lifetime at zero temperature. The value of the lifetime can be
obtained from the imaginary part of the complex eigenvalue zλ of the non-Hermitian Hamilton
operator Heff (i.e. from Im(zλ)). It expresses the time the electron stays in the quantum
dot. This time is called usually dwell time. Thus, the result obtained in [110] supports the
description of the quantum dot as an open quantum system.

Also the more complicated result of different processes in weakly and strongly disordered
systems is by no means in contradiction to the properties known for the eigenstates of open
quantum systems. In some cases, τ 0

φ depends only weakly on the electron diffusion constant
D: it is somewhat smaller when D is larger. That means, states with a large lifetime give only
a small contribution to the diffusion—a result which is very well known. In other cases, the
relation between τ 0

φ and the diffusion constant D shows the opposite trend. Also in this case
the states with a large lifetime give, of course, a small contribution to the diffusion. In contrast
to the foregoing case, however, the main contribution to the diffusion arises obviously from
short-lived states. This follows from the resonance trapping phenomenon (width bifurcation)
characteristic of the regime of overlapping resonances. In this regime, the widths of the short-
lived states increase and the widths of the trapped resonance states decrease with increasing
degree of overlapping (section 3.4). Finally, the short-lived states form some background
for the long-lived resonance states. The diffusion constant is determined mainly by the
contribution of the background states. Therefore, the diffusion constant D increases with
increasing τ 0

φ of the (long-lived) resonance states—a result being counterintuitive in the same
manner as the resonance trapping effect. The last one is directly proven experimentally [66].

In this respect another experimental result obtained in [110] is interesting. It shows that, in
the systems considered, the quantity τφ is strongly influenced by the population of the second
electronic subband in the quantum well. Obviously this means that the degree of overlapping
of the states plays an important role for the lifetimes of the states—according to one of the
basic properties of the eigenstates of Heff (section 3.4). Further experimental studies related
to this question would be very useful.

As a result of this discussion, dephasing shows features that might be related to the
non-rigidity of the phases of the wavefunctions of an open quantum system in the regime
of overlapping resonances. A quantitative description of the experimental data by using the
theory of open quantum systems with a non-Hermitian Hamilton operator, is not performed
up to now. It is, however, interesting to remark that a decoherence rate 1/τφ appears also
in the dynamics of a SWAP gate [12]. According to experimental results, this quantity is a
non-trivial function of the system–environment interaction rate τSE: one has 1/τφ ∝ 1/τSE at
low τSE (Fermi golden rule) but 1/τφ ∝ τSE at large τSE—in (qualitative) agreement with the
results discussed above.
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4.7. Open quantum systems with non-symmetric Heff

In the present paper, open quantum systems described by the symmetric non-Hermitian
Hamiltonian (4) are considered. Here, the resonance states interact via the common continuum,
while the influence of electric or magnetic fields is not taken into account. The geometrical
phase of the branch point (crossing point of eigenvalues of the symmetric Hamiltonian (4)) is
always different from the Berry phase, also when the coupling strength between system and
environment approaches zero. The reason is that the second-order term in (4) is the leading
term at the branch (exceptional) point, see section 2.5, while the Berry phase is related to the
first-order term of (4).

The opposite case is an antisymmetric non-Hermitian Hamiltonian which considers the
influence of electric or magnetic fields onto the open system, however without account of
the interaction of the states (Gamow states) via the common continuum. In this case, the
second-order term in (4) is not considered. Correspondingly, the geometrical phase of the
exceptional point passes, in this case, into the Berry phase in the limit of vanishing coupling
to the continuum [39, 42].

In the realistic case of an open quantum system under the influence of electric or magnetic
fields with inclusion of the interaction of its states via the common continuum of scattering
wavefunctions, the non-Hermitian Hamiltonian is neither symmetric nor antisymmetric. As
an example, we mention here the study on optical microspiral cavities [113] which allow us to
obtain a unidirectional light output. The non-orthogonality of the states is significant, in this
case, in a broad parameter regime. It causes an extraordinary high quality factor (similar to
that known for whispering gallery modes in circular or spherical cavities) such that microspiral
cavities are interesting for experimental studies. In this case, the geometrical phases arising
from encircling exceptional points are, generally, geometrical and not topological in nature
[43].

Exceptional points are found also in the Bose–Einstein condensation of gases with
attractive 1/r interaction [114]. The authors concentrate on the case of self-trapping, i.e.
condensation without external trap. In this case, the bifurcations of the two stationary solutions
to the nonlinear Gross–Pitaevskii equation at critical physical parameter values, where collapse
of the condensates sets in, exhibit the typical structure of exceptional points. According to the
authors of [114], there is good reason to believe that the critical parameter values of attractive
Bose–Einstein condensates are associated, quite generally, with exceptional points.

These examples show once more that open quantum systems in the neighborhood of
branch (exceptional) points have interesting properties that cannot be described in standard
quantum mechanics with Hermitian Hamilton operators. These properties may be important
for applications. Examples considered in the present paper are, among others, the enhanced
and accelerated transmission through quantum dots just below the branch points (section 4.3),
quantum-dynamical phase transitions (section 3.5), bound states in the continuum (section 4.4).
They are considered, up to now, only without account of contributions from magnetic or electric
fields. A study of these effects under the influence of external fields will surely give valuable
results for applications as well as for the general understanding of quantum phenomena.

5. Summary and outlook

The FPO formalism, together with the S matrix derived by means of it, is a powerful method
for the description of the scattering on a system localized in space. The core of the method
is the definition of two subspaces one of which is localized (Q subspace, containing discrete
states) while the other one is extended up to infinity (P subspace, containing the continuum of
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scattering states). The most important consequence of this definition is the appearance of the
non-Hermitian symmetric Hamilton operator Heff that describes the localized states in the Q
subspace under the influence of their coupling to the P subspace. The eigenvalues zλ of Heff

are complex and provide not only the energies but also the widths of the states λ.
The non-Hermitian operator Heff has some specific features that are related to its

singularities. At the singular points, two (or more) eigenvalue trajectories of Heff cross.
The singular (crossing) points are branch points in the complex plane: approaching the branch
points under different conditions, the system is characterized by different physical phenomena.
Level repulsion is the characteristic phenomenon when the non-diagonal matrix elements of
Heff are almost real and small, while width bifurcation characterizes the system when the
complex non-diagonal matrix elements are large, i.e. when the levels strongly interact via the
continuum. In the neighborhood of the true crossing points, the eigenvalue trajectories avoid
crossing. As a result of width bifurcation, the width of one of the states may even vanish,
corresponding to an infinitely long lifetime of this state. This state is called usually bound
state in the continuum. That means, the system can be stabilized at the energy of this state by
means of external parameters.

The singular points of Heff are interesting not only because of the avoided level crossing
phenomenon occurring in their neighborhood. Also the eigenfunctions φλ of Heff differ from
those of a Hermitian operator. While the phases of the last ones are always rigid, those of the
φλ are not rigid, generally. The value of the phase rigidity may vary, 1 � rλ � 0. Approaching
a true crossing point of two eigenvalue trajectories, the phase rigidity of the corresponding
eigenfunctions approaches zero, meaning that the wavefunctions of the two states become
linearly dependent at the crossing point. At the same time, a so-called associated vector
appears due to the Jordan chain relations such that there are two different states also at
the singular point. The non-rigidity of the phases of the eigenfunctions φλ of Heff in the
regime of overlapping resonances allows the alignment of some of them to the scattering
wavefunctions of the environment and the (accompanying) decoupling of other states from the
continuum (resonance trapping due to width bifurcation). That means, it allows spectroscopic
redistribution processes (dynamical phase transitions) in the system under the influence of
its coupling to the environment. These redistribution processes occur due to the feedback
from the environment of scattering states onto the system. They can be seen by varying any
parameter.

Numerical and analytical studies have shown that the features caused by the non-
Hermiticity of Heff survive when the problem (H − E)�E

c = 0 in the whole function
space (Q + P = 1) is solved. The physical observables behave smoothly when the singular
point is crossed. However, the avoided level crossings of the eigenvalue trajectories in their
neighborhood determine the dynamics of open quantum systems. An example are laser-
induced continuum structures in atoms. The eigenvalue trajectories behave nonlinear in the
neighborhood of the branch points, and the spectrum of the atom may be manipulated by
means of varying intensity and (or) frequency of the laser.

Moreover, the non-rigidity of the phases of �E
c in the interior of the localized system

may cause an enhancement of observable quantities in this regime with respect to the values
obtained in the standard quantum mechanics with Hermitian Hamilton operator. An example
is the transmission through quantum billiards: the reduction of the phase rigidity ρ → 0 is
correlated with an enhancement of the transmission up to its maximum value (corresponding to
full transparency) and with an acceleration of the process (corresponding to a direct process).
The most clear examples are whispering gallery modes in cavities with convex boundary. They
exist in the regime of overlapping resonances and are very stable. They will be destroyed
only at larger coupling strength between system and environment when further spectroscopic
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redistribution processes reduce finally the number of short-lived states to the number of open
decay channels.

Of great interest is the direct proof of the dynamical phase transition in spite of the many
hints at their existence. Although clearly observed experimentally in cross-polarization NMR
data [12], these results are not related, up to now, to the non-Hermitian quantum mechanics.
The relation of the phase lapses found experimentally in the transmission through quantum
dots [22], to the resonance trapping phenomenon (i.e. to the physics with a non-Hermitian
Hamiltonian) is discussed in section 4.5. It has to be proven by further experimental and
theoretical studies.

Another advantage of the FPO formalism (in comparison with other approaches) is that
the many-body problem is solved at the very beginning in (5) and (9). That means, it is
incorporated into the calculations in the same manner as in the standard calculations for
discrete states. Formally, the FPO formalism may be considered as a generalization of the
R matrix approach [115]. In both cases, the wavefunctions of the system are localized in
coordinate space (Q subspace in the FPO formalism) and coupled to an extended continuum
of scattering wavefunctions (P subspace in the FPO formalism). However, the standard
spectroscopic parameters of the R matrix approach do not contain any feedback from the
continuum of scattering wavefunctions. In the FPO formalism, these quantities are replaced
by the energy-dependent functions Eλ and λ in which the feedback is contained. It should
be underlined that all states of the considered system are eigenstates of Heff , including those
lying below the first decay threshold (or beyond the transmission window). The widths of
these states are zero, however the principal value integral (7) does not vanish, in general.

The properties of open quantum systems originating from the non-Hermitian Hamilton
operator Heff are contained, of course, also in calculations for special systems performed on
the basis of other models (if these calculations do not contain serious approximations). For
example, the effective Green function derived by Datta [8] for the description of electronic
transport in mesoscopic systems, is equivalent to Heff . The advantage of the FPO formalism (in
comparison with other methods) consists of the fact that it provides not only numerical results
for the cross section of the considered system. Most important is that the formalism is very
transparent such that the influence of the peculiarities of the eigenvalues and eigenfunctions of
the non-Hermitian Hamilton operator Heff onto observable quantities can be seen immediately.
The formalism is an adequate tool for treating the physics of open quantum systems. In many
cases, it may be useful to combine a special method for the description of the considered
system with the study of the corresponding non-Hermitian Hamilton operator.

In spite of much knowledge received recently on the role of non-Hermitian Hamilton
operators in open quantum systems, there are still many open questions that have to be solved.
One example is the relation between densely lying (avoided and true) crossing points and the
threshold for opening a new decay channel as well as the role of external constraints onto the
system (e.g. transmission zeros or edge effects). Another example is the relation of trapped
states to quantum chaos. Also dynamical phase transitions have to be studied in more detail.
All these questions are of fundamental interest and may be important for applications as well.
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Sim, Hans-Jürgen Stöckmann, Svetlana Strakhova during last about 10 years. I am grateful
to all of them for the collaboration and for many valuable discussions. I am also grateful to
Horacio Pastawski for discussions on quantum chemistry.

References

[1] Friedrichs K O 1948 Commun. Pure Appl. Math. 1 361
[2] Miyamoto M 2006 J. Math. Phys. 47 082103

Miyamoto M 2005 Phys. Rev. A 72 063405
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Álvarez G A, Danieli E P, Levstein P R and Pastawski H M 2007 Phys. Rev. A 75 062116
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